References
- Abdelrahman, A.A. and Eltaher, M.A. (2022), "On bending and buckling responses of perforated nanobeams including surface energy for different beams theories", Eng. Comput., 38(3), 2385-2411. https://doi.org/10.1007/s00366-020-01211-8.
- Abdelrahman, A.A., Esen, I., O zarpa, C. and Eltaher, M.A. (2021a), "Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory", Appl. Math. Modell., 96, 215-235. https://doi.org/10.1016/j.apm.2021.03.008.
- Abdelrahman, A.A., Esen, I., O zarpa, C., Shaltout, R., Eltaher, M.A. and Assie, A.E. (2021b), "Dynamics of perforated higher order nanobeams subject to moving load using the nonlocal strain gradient theory", Smart Struct. Syst., 28(4), 515-553. https://doi.org/10.12989/sss.2021.28.4.515.
- Abdelrahman, A.A., Mohamed, N.A. and Eltaher, M.A. (2022), "Static bending of perforated nanobeams including surface energy and microstructure effects", Eng. Comput., 38(S1), 415-435. https://doi.org/10.1007/s00366-020-01149-x.
- Akbas, S., Ersoy, H., Akgoz, B. and Civalek, O . (2021), "Dynamic analysis of a fiber-reinforced composite beam under a moving load by the Ritz method", Mathematics, 9(9), 1048. https://doi.org/10.3390/math9091048
- Akgoz, B. and Civalek, O . (2011), "Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams", Int. J. Eng. Sci., 49(11), 1268-1280. https://doi.org/10.1016/j.ijengsci.2010.12.009.
- Alazwari, M.A., Esen, I., Abdelrahman, A.A., Abdraboh, A.M. and Eltaher, M.A. (2022), "Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermomagnetic fields and moving load", Adv. Nano Res., 12(3), 231-251. https://doi.org/10.12989/anr.2022.12.3.231.
- Almitani, K.H., Abdelrahman, A.A., and Eltaher, M.A. (2020), "Stability of perforated nanobeams incorporating surface energy effects", Steel Compos. Struct., 35(4), 555-566. https://doi.org/https://doi.org/10.12989/scs.2020.35.4.555.
- Altenbach H and O chsner A. (2020), Encyclopedia of Continuum Mechanics (H. Altenbach and A. O chsner, Eds.), Springer, Berlin, Heidelberg.
- Apuzzo, A., Barretta, R., Faghidian, S. A., Luciano, R. and Marotti de Sciarra, F. (2018), "Free vibrations of elastic beams by modified nonlocal strain gradient theory", Int. J. Eng. Sci., 133, 99-108. https://doi.org/10.1016/j.ijengsci.2018.09.002.
- Arda, M. (2022), "Evaluation of optimum length scale parameters in longitudinal wave propagation on nonlocal strain gradient carbon nanotubes by lattice dynamics", Mech. Based Des. Struct., 50(12), 4363-4386. https://doi.org/10.1080/15397734.2020.1835488.
- Arefi, M. and Amabili, M. (2021), "A comprehensive electro-magneto-elastic buckling and bending analyses of three-layered doubly curved nanoshell, based on nonlocal three-dimensional theory", Compos. Struct., 257, 113100. https://doi.org/10.1016/j.compstruct.2020.113100.
- Arefi, M., Mohammad-Rezaei Bidgoli, E., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2019), "Nonlocal bending analysis of curved nanobeams reinforced by graphene nanoplatelets", Compos. Part B Eng., 166, 1-12. https://doi.org/10.1016/j.compositesb.2018.11.092.
- Asghari, M., Kahrobaiyan, M.H., Nikfar, M. and Ahmadian, M.T. (2012), "A size-dependent nonlinear Timoshenko microbeam model based on the strain gradient theory", Acta Mechanica, 223(6), 1233-1249. https://doi.org/10.1007/s00707-012-0625-0.
- Barati, M.R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano Res., 5(4), 393-414. https://doi.org/10.12989/anr.2017.5.4.393.
- Barretta, R., Ali Faghidian, S., de Sciarra, F.M. and Pinnola, F.P. (2021), "Timoshenko nonlocal strain gradient nanobeams: Variational consistency, exact solutions and carbon nanotube Young moduli", Mech. Adv. Mater. Struct., 28(15), 1523-1536. https://doi.org/10.1080/15376494.2019.1683660.
- Beni, Z.T. and Beni, Y.T. (2022), "Dynamic stability analysis of size-dependent viscoelastic/piezoelectric nano-beam", Int. J. Struct. Stabil. Dyn., 22(5). https://doi.org/10.1142/S021945542250050X
- Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., 6(3), 279-298. https://doi.org/10.12989/anr.2018.6.3.279.
- Bourouina, H., Yahiaoui, R., Kerid, R., Ghoumid, K., Lajoie, I., Picaud, F. and Herlem, G. (2020), "The influence of hole networks on the adsorption-induced frequency shift of a perforated nanobeam using non-local elasticity theory", J. Phys. Chem. Solids, 136, 109201. https://doi.org/10.1016/j.jpcs.2019.109201.
- Bourouina, H., Yahiaoui, R., Sahar, A. and Benamar, M.E.A. (2016), "Analytical modeling for the determination of nonlocal resonance frequencies of perforated nanobeams subjected to temperature-induced loads", Physica E, 75, 163-168. https://doi.org/10.1016/j.physe.2015.09.014.
- Civalek, O ., Uzun, B. and Yayli, M.O . (2020), "Frequency, bending and buckling loads of nanobeams with different cross sections", Adv. Nano Res., 9(2), 91-104. https://doi.org/10.12989/anr.2020.9.2.091.
- Civalek, O ., Uzun, B. and Yayli, M.O . (2022a), "Size dependent torsional vibration of a restrained single walled carbon nanotube (SWCNT) via nonlocal strain gradient approach", Mater. Today Commun., 33, 104271. https://doi.org/10.1016/j.mtcomm.2022.104271.
- Civalek, O ., Uzun, B., and Yayli, M. O . (2022b), "A Fourier sine series solution of static and dynamic response of nano/micro micro-scaled FG rod under torsional effect", Adv. Nano Res., 12(5), 467-482. https://doi.org/10.12989/anr.2022.12.5.467
- Civalek, O ., Uzun, B., and Yayli, M. O . (2022c), "Thermal buckling analysis of a saturated porous thick nanobeam with arbitrary boundary conditions", J. Therm Stress., 1-21. https://doi.org/10.1080/01495739.2022.2145401
- Daghigh, H., Daghigh, V., Milani, A., Tannant, D., Lacy, T. E. and Reddy, J. N. (2020), "Nonlocal bending and buckling of agglomerated CNT-Reinforced composite nanoplates", Compos. Part B Eng., 183, 107716. https://doi.org/10.1016/j.compositesb.2019.107716.
- Demir, C . and Civalek, O . (2017), "On the analysis of microbeams", Int. J. Eng. Sci., 121, 14-33. https://doi.org/10.1016/j.ijengsci.2017.08.016.
- Ebnali Samani, M.S. and Beni, Y.T. (2018), "Size dependent thermo-mechanical buckling of the flexoelectric nanobeam", Mater. Res. Express, 5(8), 085018. https://doi.org/10.1088/2053-1591/aad2ca.
- Ebrahimi, F. and Barati, M.R. (2017), "Size-dependent dynamic modeling of inhomogeneous curved nanobeams embedded in elastic medium based on nonlocal strain gradient theory", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 231(23), 4457-4469. https://doi.org/10.1177/0954406216668912.
- Ebrahimi, F. and Barati, M.R. (2018a), "Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(11), 2067-2078. https://doi.org/10.1177/0954406217713518.
- Ebrahimi, F. and Barati, M.R. (2018b), "Longitudinal varying elastic foundation effects on vibration behavior of axially graded nanobeams via nonlocal strain gradient elasticity theory", Mech. Adv. Mater. Struct., 25(11), 953-963. https://doi.org/10.1080/15376494.2017.1329467.
- Ebrahimi, F., Karimiasl, M. and Mahesh, V. (2019), "Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory", Adv. Nano Res., 7(4), 223-231. https://doi.org/10.12989/ANR.2019.7.4.223.
- Eltaher, M.A., Abdraboh, A.M. and Almitani, K.H. (2018a), "Resonance frequencies of size dependent perforated nonlocal nanobeam", Microsyst. Technol., 24(9), 3925-3937. https://doi.org/10.1007/s00542-018-3910-6.
- Eltaher, M.A., Kabeel, A.M., Almitani, K.H. and Abdraboh, A.M. (2018b), "Static bending and buckling of perforated nonlocal size-dependent nanobeams", Microsyst. Technol., 24(12), 4881-4893. https://doi.org/10.1007/s00542-018-3905-3.
- Eltaher, M.A., Khairy, A., Sadoun, A.M. and Omar, F.A. (2014), "Static and buckling analysis of functionally graded Timoshenko nanobeams", Appl. Math. Comput., 229, 283-295. https://doi.org/10.1016/j.amc.2013.12.072.
- Eltaher, M.A., Khater, M.E. and Emam, S.A. (2016), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Math. Modell., 40(5-6), 4109-4128. https://doi.org/10.1016/J.APM.2015.11.026.
- Eltaher, M.A. and Mohamed, N.A. (2020), "Vibration of nonlocal perforated nanobeams with general boundary conditions", Smart Struct. Syst., 25(4), 501-514. https://doi.org/10.12989/SSS.2020.25.4.501.
- Eltaher, M.A., Omar, F.A., Abdalla, W.S., Kabeel, A.M. and Alshorbagy, A.E. (2020a), "Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects", Struct. Eng. Mech., 76(1), 141-151. https://doi.org/10.12989/sem.2020.76.1.141.
- Eltaher, M.A., Omar, F.A., Abdraboh, A.M., Abdalla, W.S. and Alshorbagy, A.E. (2020b), "Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts", Smart Struct. Syst., 25(2), 219-228. https://doi.org/10.12989/SSS.2020.25.2.219.
- Eltaher, M.A., Shanab, R.A. and Mohamed, N.A. (2023), "Analytical solution of free vibration of viscoelastic perforated nanobeam", Arch. Appl. Mech., 93(1), 221-243. https://doi.org/10.1007/s00419-022-02184-4.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
- Eringen, A.C. (1987), "Theory of nonlocal elasticity and some applications", Res Mechanica, 21(4), 313-342. https://doi.org/10.21236/ada145201.
- Eringen, A.C. (2002), Nonlocal Continuum Field Theories. Springer New York, NY. https://doi.org/10.1007/b97697.
- Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2021a), "On vibration of sigmoid/symmetric functionally graded nonlocal strain gradient nanobeams under moving load", Int. J. Mech. Mater. Des., 17(3), 721-742. https://doi.org/10.1007/s10999-021-09555-9.
- Esen, I., Daikh, A.A. and Eltaher, M.A. (2021b), "Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load", Eur. Phys. J. Plus, 136(4), 458. https://doi.org/10.1140/epjp/s13360-021-01419-7.
- Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2022a), "Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields", Eng. Comput., 38(4), 3463-3482. https://doi.org/10.1007/s00366-021-01389-5.
- Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2022b), "Dynamics analysis of timoshenko perforated microbeams under moving loads", Eng. Comput., 38(3), 2413-2429. https://doi.org/10.1007/s00366-020-01212-7.
- Esen, I. and O zmen, R. (2022), "Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity", Compos. Struct., 296, 115878. https://doi.org/10.1016/j.compstruct.2022.115878.
- Faghidian, S.A. (2020a), "Two-phase local/nonlocal gradient mechanics of elastic torsion", Math. Method Appl. Sci., Special Issue Paper. https://doi.org/10.1002/mma.6877
- Faghidian, S.A. (2020b), "Higher order mixture nonlocal gradient theory of wave propagation", Math. Method Appl. Sci., Special Issue Paper. https://doi.org/10.1002/mma.6885
- Faghidian, S.A. (2021a), "Contribution of nonlocal integral elasticity to modified strain gradient theory", Eur. Phys. J. Plus, 136(5), 559. https://doi.org/10.1140/epjp/s13360-021-01520-x
- Faghidian, S.A. (2021b), "Flexure mechanics of nonlocal modified gradient nano-beams", J. Comput. Des. Eng., 8(3), 949-959. https://doi.org/10.1093/jcde/qwab027
- Faghidian, S.A., Zur, K.K. and Reddy, J.N. (2022a), "A mixed variational framework for higher-order unified gradient elasticity", Int. J. Eng. Sci., 170, 103603. https://doi.org/10.1016/j.ijengsci.2021.103603
- Faghidian, S.A., Zur, K.K., Reddy, J.N. and Ferreira, A.J.M. (2022b), "On the wave dispersion in functionally graded porous Timoshenko-Ehrenfest nanobeams based on the higher-order nonlocal gradient elasticity", Compos. Struct., 279, 114819. https://doi.org/10.1016/J.COMPSTRUCT.2021.114819
- Faghidian, S.A., Zur, K.K., Pan, E. and Kim, J. (2022c), "On the analytical and meshless numerical approaches to mixture stress gradient functionally graded nano-bar in tension", Eng. Anal. Bound. Elem., 134, 571-580. https://doi.org/10.1016/J.ENGANABOUND.2021.11.010
- Faghidian, S.A., Zur, K.K. and Rabczuk, T. (2022d), "Mixture unified gradient theory: A consistent approach for mechanics of nanobars", Appl. Phys. A, 128(11), 996. https://doi.org/10.1007/s00339-022-06130-7
- Faghidian, S.A., Zur, K.K. and Pan, E. (2023a), "Stationary variational principle of mixture unified gradient elasticity", Int. J. Eng. Sci., 182, 103786. https://doi.org/10.1016/J.IJENGSCI.2022.103786
- Faghidian, S.A., Zur, K.K. and Elishakoff, I. (2023b), "Nonlinear flexure mechanics of mixture unified gradient nanobeams", Commun. Nonlinear Sci. Numer. Simul., 117, 106928. https://doi.org/10.1016/J.CNSNS.2022.106928
- Fakher, M. and Hosseini-Hashemi, S. (2022), "On the vibration of nanobeams with consistent two-phase nonlocal strain gradient theory: exact solution and integral nonlocal finite-element model", Eng. Comput., 38(3), 2361-2384. https://doi.org/10.1007/s00366-020-01206-5.
- Farajpour, A., Shahidi, A.R., Mohammadi, M. and Mahzoon, M. (2012), "Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics", Compos. Struct., 94(5), 1605-1615. https://doi.org/10.1016/J.COMPSTRUCT.2011.12.032.
- Farrahi, G.H., Faghidian, S.A. and Smith, D.J. (2009), "Reconstruction of residual stresses in autofrettaged thick-walled tubes from limited measurements", Int. J. Press. Vessels Pip., 86(11), 777-784. https://doi.org/10.1016/J.IJPVP.2009.03.010
- Farrahi, G.H., Faghidian, S.A. and Smith, D.J. (2010), "an inverse method for reconstruction of the residual stress field in welded plates", J. Press. Vessel Technol., 132(6). https://doi.org/10.1115/1.4001268
- Fleck, N.A. and Hutchinson, J.W. (1993), "A phenomenological theory for strain gradient effects in plasticity", J. Mech. Phys. Solids, 41(12), 1825-1857. https://doi.org/10.1016/0022-5096(93)90072-N.
- Fleck, N.A. and Hutchinson, J.W. (2001), "A reformulation of strain gradient plasticity", J. Mech. Phys. Solids, 49(10), 2245-2271. https://doi.org/10.1016/S0022-5096(01)00049-7.
- Giannuzzi, L.A. and Stevie, F.A. (1999), "A review of focused ion beam milling techniques for TEM specimen preparation", Micron, 30(3), 197-204. https://doi.org/10.1016/S0968-4328(99)00005-0.
- Guha, K., Kumar, M., Agarwal, S. and Baishya, S. (2015), "A modified capacitance model of RF MEMS shunt switch incorporating fringing field effects of perforated beam", Solid-State Electronics, 114, 35-42. https://doi.org/10.1016/J.SSE.2015.07.008.
- Guclu, G. and Artan, R. (2020), "Large elastic deflections of bars based on nonlocal elasticity", ZAMM J. Appl. Math. Mech., 100(4), e201900108. https://doi.org/10.1002/zamm.201900108.
- Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
- Harik, V.M. (2002), "Mechanics of carbon nanotubes: applicability of the continuum-beam models", Comput. Mater. Sci., 24(3), 328-342. https://doi.org/10.1016/S0927-0256(01)00255-5.
- Hutchinson, J. and Fleck, N. (1997), "Strain gradient plasticity", Adv. Appl. Mech., 33, 295-361. https://doi.org/10.1016/S0065-2156(08)70388-0
- Jena, S. K., Chakraverty, S. and Tornabene, F. (2019), "Dynamical behavior of nanobeam embedded in constant, linear, parabolic, and sinusoidal types of Winkler elastic foundation using first-Order nonlocal strain gradient model", Mater. Res. Express, 6(8), 0850f2. https://doi.org/10.1088/2053-1591/ab2779.
- Jeong, K.H. and Amabili, M. (2006), "Bending vibration of perforated beams in contact with a liquid", J. Sound Vib., 298(1-2), 404-419. https://doi.org/10.1016/J.JSV.2006.05.029
- Kar, V.R. and Panda, S.K. (2017), "Postbuckling analysis of shear deformable FG shallow spherical shell panel under nonuniform thermal environment", J. Therm. Stress., 40(1), 25-39. https://doi.org/10.1080/01495739.2016.1207118
- Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., 20(5), 595-605. https://doi.org/10.12989/sss.2017.20.5.595
- Katariya, P.V. and Panda, S.K. (2016), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircr. Eng. Aerosp. Technol., 88(1), 97-107. https://doi.org/10.1108/AEAT-11-2013-0202
- Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Naddaf Oskouei, A. (2017), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin Wall. Struct., 113, 162-169. https://doi.org/10.1016/J.TWS.2017.01.016.
- Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
- Langford, R.M., Nellen, P.M., Gierak, J., and Fu, Y. (2007), "Focused ion beam micro- and nanoengineering", MRS Bulletin, 32(5), 417-423. https://doi.org/10.1557/mrs2007.65.
- Li, L. and Hu, Y. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011.
- Li, Y.D., Bao, R. and Chen, W. (2018), "Buckling of a piezoelectric nanobeam with interfacial imperfection and van der Waals force: Is nonlocal effect really always dominant?", Compos. Struct., 194, 357-364. https://doi.org/10.1016/j.compstruct.2018.04.031.
- Lim, C.W., Zhang, G. and Reddy, J.N. (2015a), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/J.JMPS.2015.02.001.
- Lim, C.W., Islam, M.Z. and Zhang, G. (2015b), "A nonlocal finite element method for torsional statics and dynamics of circular nanostructures", Int. J. Mech. Sci., 94-95, 232-243. https://doi.org/10.1016/J.IJMECSCI.2015.03.002.
- Lu, L., Guo, X. and Zhao, J. (2017), "A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms", Int. J. Eng. Sci., 119, 265-277. https://doi.org/10.1016/j.ijengsci.2017.06.024.
- Luschi, L. and Pieri, F. (2014), "An analytical model for the determination of resonance frequencies of perforated beams", J. Micromech. Microeng., 24(5), 055004. https://doi.org/10.1088/0960-1317/24/5/055004.
- Melaibari, A., Abdelrahman, A.A., Hamed, M.A., Abdalla, A.W. and Eltaher, M.A. (2022), "Dynamic analysis of a piezoelectrically layered perforated nonlocal strain gradient nanobeam with flexoelectricity", Mathematics, 10(15), 2614. https://doi.org/10.3390/math10152614.
- Mindlin, R.D. (1964), "Micro-structure in linear elasticity", Arch. Ration. Mech. Anal., 16, 51-78. https://doi.org/10.1007/BF00248490.
- Mindlin, R.D. (1965), "Second gradient of strain and surface-tension in linear elasticity", Int. J. Solids Struct., 1(4), 417-438. https://doi.org/10.1016/0020-7683(65)90006-5.
- Mirjavadi, S.S., Forsat, M., Nia, A.F., Badnava, S. and Hamouda, A.M.S. (2020), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., 8(2), 149-156. https://doi.org/10.12989/anr.2020.8.2.149.
- Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/https://doi.org/10.12989/anr.2019.7.3.181
- Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324
- Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/J.COMPSTRUCT.2019.03.002
- Murmu, T. and Pradhan, S.C. (2009), "Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM", Physica E, 41(7), 1232-1239. https://doi.org/10.1016/J.PHYSE.2009.02.004.
- Najafzadeh, M., Adeli, M.M., Zarezadeh, E. and Hadi, A. (2020), "Torsional vibration of the porous nanotube with an arbitrary cross-section based on couple stress theory under magnetic field", Mech. Based Des. Struct. Mach., 50(2), 726-740. https://doi.org/10.1080/15397734.2020.1733602.
- Nematollahi, M.S., Mohammadi, H. and Nematollahi, M.A. (2017), "Thermal vibration analysis of nanoplates based on the higher-order nonlocal strain gradient theory by an analytical approach", Superlatt. Microstruct., 111, 944-959. https://doi.org/10.1016/j.spmi.2017.07.055.
- Noroozi, R., Barati, A., Kazemi, A., Norouzi, S. and Hadi, A. (2020), "Torsional vibration analysis of bi-directional FG nanocone with arbitrary cross-section based on nonlocal strain gradient elasticity", Adv. Nano Res., 8(1), 13-24. https://doi.org/10.12989/anr.2020.8.1.013.
- Numanoglu, H.M., Akgoz, B. and Civalek, O . (2018), "On dynamic analysis of nanorods", Int. J. Eng. Sci., 130, 33-50. https://doi.org/10.1016/j.ijengsci.2018.05.001.
- Panda, S.K. and Singh, B.N. (2010), "Nonlinear free vibration analysis of thermally post-buckled composite spherical shell panel", Int. J. Mech. Mater. Des. 6(2), 175-188. https://doi.org/10.1007/s10999-010-9127-1
- Panda, S.K. and Singh, B.N. (2013a), "Thermal postbuckling behavior of laminated composite spherical shell panel using NFEM", Mech. Based Des. Struct., 41(4), 468-488. https://doi.org/10.1080/15397734.2013.797330
- Panda, S.K. and Singh, B.N. (2013b), "Post-buckling analysis of laminated composite doubly curved panel embedded with sma fibers subjected to thermal environment", Mech. Adv. Mater. Struct., 20(10), 842-853. https://doi.org/10.1080/15376494.2012.677097
- Park, S.H. (2013), "A design method of micro-perforated panel absorber at high sound pressure environment in launcher fairings", J. Sound Vib., 332(3), 521-535. https://doi.org/10.1016/J.JSV.2012.09.015
- Pelliciari, M. and Tarantino, A.M. (2021), "Equilibrium and stability of anisotropic hyperelastic graphene membranes", J. Elast., 144(2), 169-195. https://doi.org/10.1007/s10659-021-09837-5
- Pelliciari, M. and Tarantino, A.M. (2022), "A continuum model for circular graphene membranes under uniform lateral pressure", J. Elast., 151(2), 273-303. https://doi.org/10.1007/s10659-022-09937-w
- Pelliciari, M., Pasca, D.P., Aloisio, A. and Tarantino, A.M. (2022), "Size effect in single layer graphene sheets and transition from molecular mechanics to continuum theory", Int. J. Mech. Sci., 214, 106895. https://doi.org/10.1016/j.ijmecsci.2021.106895
- Pham, Q.H., Tran, T.T., Tran, V.K., Nguyen, P.C., Nguyen-Thoi, T. and Zenkour, A.M. (2021), "Bending and hygro-thermo-mechanical vibration analysis of a functionally graded porous sandwich nanoshell resting on elastic foundation", Mech. Adv. Mater. Struct., 1-21. https://doi.org/10.1080/15376494.2021.1968549.
- Reddy, J.N. (2010), "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates", Int. J. Eng. Sci., 48(11), 1507-1518. https://doi.org/10.1016/J.IJENGSCI.2010.09.020.
- Reyntjens, S. and Puers, R. (2001), "A review of focused ion beam applications in microsystem technology", J. Micromech. Microeng., 11(4), 287-300. https://doi.org/10.1088/0960-1317/11/4/301.
- Sari, G. and Pakdemirli, M. (2013), "Non-linear vibrations of a microbeam resting on an elastic foundation", Arabian J. Sci. Eng., 38(5), 1191-1199. https://doi.org/10.1007/s13369-012-0533-6.
- Shariati, A., Barati, M.R., Ebrahimi, F., Singhal, A. and Toghroli, A. (2020), "Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory", Adv. Nano Res., 8(4), 265-276. https://doi.org/10.12989/anr.2020.8.4.265.
- Simsek, M. (2016), "Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach", Int. J. Eng. Sci., 105, 12-27. https://doi.org/10.1016/j.ijengsci.2016.04.013.
- Soltani, M., Atoufi, F., Mohri, F., Dimitri, R. and Tornabene, F. (2021), "Nonlocal elasticity theory for lateral stability analysis of tapered thin-walled nanobeams with axially varying materials", Thin Wall. Struct., 159, 107268. https://doi.org/10.1016/j.tws.2020.107268.
- Tang, Y., Liu, Y. and Zhao, D. (2016), "Viscoelastic wave propagation in the viscoelastic single walled carbon nanotubes based on nonlocal strain gradient theory", Physica E, 84, 202-208. https://doi.org/10.1016/j.physe.2016.06.007.
- Tang, Y. and Qing, H. (2023), "Size-dependent nonlinear postbuckling analysis of functionally graded porous Timoshenko microbeam with nonlocal integral models", Commun. Nonlinear Sci. Numer. Simul., 116. https://doi.org/10.1016/j.cnsns.2022.106808.
- Temiz, M.A., Tournadre, J., Arteaga, I.L. and Hirschberg, A. (2016), "Non-linear acoustic transfer impedance of microperforated plates with circular orifices", J. Sound Vib., 366, 418-428. https://doi.org/10.1016/J.JSV.2015.12.022.
- Toupin, R. (1962), "Elastic materials with couple-stresses", Arch. Ration. Mech. Anal., 11(1), 385-414. https://doi.org/10.1007/BF00253945.
- Tsuji, T., Kakita, T. and Tsuji, M. (2003), "Preparation of nanosize particles of silver with femtosecond laser ablation in water", Appl. Surface Sci., 206(1-4), 314-320. https://doi.org/10.1016/S0169-4332(02)01230-8.
- Uzun, B., and Yayli, M. O . (2022), "Porosity dependent torsional vibrations of restrained FG nanotubes using modified couple stress theory", Mater. Today Commun., 32, 103969. https://doi.org/10.1016/J.MTCOMM.2022.103969
- Uzun, B., Civalek, O . and Yayli, M. O . (2020a), "Vibration of FG nano-sized beams embedded in Winkler elastic foundation and with various boundary conditions", Mech. Based Des. Struct., 1-20. https://doi.org/10.1080/15397734.2020.1846560.
- Uzun, B., Kafkas, U. and Yayli, M.O . (2020b), "Axial dynamic analysis of a Bishop nanorod with arbitrary boundary conditions", ZAMM J. Appl. Math. Mech., 100(12), e202000039. https://doi.org/10.1002/ZAMM.202000039.
- Uzun, B., Kafkas, U. and Yayli, M.O . (2020c), "Stability analysis of restrained nanotubes placed in electromagnetic field", Microsyst. Technol., 26(12), 3725-3736. https://doi.org/10.1007/s00542-020-04847-0
- Uzun, B., Kafkas, U., Deliktas, B. and Yayli, M.O . (2023), "Size-dependent vibration of porous bishop nanorod with arbitrary boundary conditions and nonlocal elasticity effects", J. Vib. Eng. Technol., 11, 809-826. https://doi.org/10.1007/s42417-022-00610-z
- Wang, B., Zhao, J. and Zhou, S. (2010), "A micro scale Timoshenko beam model based on strain gradient elasticity theory", Eur. J. Mech. A Solids, 29(4), 591-599. https://doi.org/10.1016/j.euromechsol.2009.12.005.
- Wang, J., Zhou, W., Huang, Y., Lyu, C., Chen, W. and Zhu, W. (2018), "Controllable wave propagation in a weakly nonlinear monoatomic lattice chain with nonlocal interaction and active control", Appl. Math. Mech., 39(8), 1059-1070. https://doi.org/10.1007/s10483-018-2360-6.
- Wang, Y.Q. and Liang, C. (2019), "Wave propagation characteristics in nanoporous metal foam nanobeams", Results Phys., 12, 287-297. https://doi.org/10.1016/J.RINP.2018.11.080.
- Xu, X.J., Wang, X.C., Zheng, M.L. and Ma, Z. (2017), "Bending and buckling of nonlocal strain gradient elastic beams", Compos. Struct., 160, 366-377. https://doi.org/10.1016/j.compstruct.2016.10.038.
- Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
- Yayli, M.O . (2017), "Buckling analysis of a cantilever single-walled carbon nanotube embedded in an elastic medium with an attached spring", Micro Nano Lett., 12(4), 255-259. https://doi.org/10.1049/mnl.2016.0662.
- Yayli, M.O . (2019), "Stability analysis of a rotationally restrained microbar embedded in an elastic matrix using strain gradient elasticity", Curve. Layer. Struct., 6(1), 1-10. https://doi.org/10.1515/cls-2019-0001.
- Yayli, M.O ., Uzun, B. and Deliktas, B. (2021), "Buckling analysis of restrained nanobeams using strain gradient elasticity", Waves Random Complex Med., 1-20. https://doi.org/10.1080/17455030.2020.1871112.
- Zeighampour, H., Tadi Beni, Y. and Botshekanan Dehkordi, M. (2018), "Wave propagation in viscoelastic thin cylindrical nanoshell resting on a visco-Pasternak foundation based on nonlocal strain gradient theory", Thin Wall. Struct., 122, 378-386. https://doi.org/10.1016/j.tws.2017.10.037.
- Zeighampour, H. and Tadi Beni, Y. (2021), "Vibration analysis of boron nitride nanotubes by considering electric field and surface effect", Adv. Nano Res., 11(6), 607-620. https://doi.org/10.12989/anr.2021.11.6.607
- Zhang, W., Zhang, Y., Tang, J., Zhang, Y., Wang, L. and Ling, Q. (2002), "Study on preparation and optic properties of nano europium oxide-ethanol sol by pulsed laser ablation", Thin Solid Films, 417(1-2), 43-46. https://doi.org/10.1016/S0040-6090(02)00640-5.
- Zhu, X. and Li, L. (2017), "Closed form solution for a nonlocal strain gradient rod in tension", Int. J. Eng. Sci., 119, 16-28. https://doi.org/10.1016/j.ijengsci.2017.06.019.
- Zur, K.K. and Faghidian, S.A. (2021), "Analytical and meshless numerical approaches to unified gradient elasticity theory", Eng. Anal. Bound. Elem., 130, 238-248. https://doi.org/10.1016/J.ENGANABOUND.2021.05.022