DOI QR코드

DOI QR Code

Predicting ESP and HNT effects on the mechanical properties of eco-friendly composites subjected to micro-indentation test

  • Saeed Kamarian (Department of Mechanical Engineering, Changwon National University) ;
  • Ali Khalvandi (Composites Research Laboratory (CRLab), Amirkabir University of Technology) ;
  • Thanh Mai Nguyen Tran (Department of Mechanical Engineering, Changwon National University) ;
  • Reza Barbaz-Isfahani (Composites Research Laboratory (CRLab), Amirkabir University of Technology) ;
  • Saeed Saber-Samandari (Composites Research Laboratory (CRLab), Amirkabir University of Technology) ;
  • Jung-Il Song (Department of Mechanical Engineering, Changwon National University)
  • Received : 2022.06.11
  • Accepted : 2023.01.26
  • Published : 2023.10.25

Abstract

The main goal of the present study was to assess the effects of eggshell powder (ESP) and halloysite nanotubes (HNTs) on the mechanical properties of abaca fiber (AF)-reinforced natural composites. For this purpose, a limited number of indentation tests were first performed on the AF/polypropylene (PP) composites for different HNT and ESP loadings (0 wt.% ~ 6 wt.%), load amplitudes (150, 200, and 250 N), and two types of indenters (Vickers or conical). The Young's modulus, hardness and plasticity index of each specimen were calculated using the indentation test results and Oliver-Pharr method. The accuracy of the experimental results was confirmed by comparing the values of the Young's modulus obtained from the indentation test with the results of the conventional tensile test. Then, a feed-forward shallow artificial neural network (ANN) with high efficiency was trained based on the obtained experimental data. The trained ANN could properly predict the variations of the mentioned mechanical properties of AF/PP composites incorporated with different HNT and ESP loadings. Furthermore, the trained ANN demonstrated that HNTs increase the elastic modulus and hardness of the composite, while the incorporation of ESP reduces these properties. For instance, the Young's modulus of composites incorporated with 3 wt.% of ESP decreased by 30.7% compared with the pure composite, while increasing the weight fraction of ESP up to 6% decreased the Young's modulus by 34.8%. Moreover, the trained ANN indicated that HNTs have a more significant effect on reducing the plasticity index than ESP.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2018R1A6A1A03024509).

References

  1. Arbabi, V., Pouran, B., Campoli, G., Weinans, H. and Zadpoor, A.A. (2016), "Determination of the mechanical and physical properties of cartilage by coupling poroelastic-based finite element models of indentation with artificial neural networks", J. Biomech., 49(5), 631-637. https://doi.org/10.1016/j.jbiomech.2015.12.014.
  2. Balan, G.S., Krishnan, A.M., Saravanavel, S. and Ravichandran, M. (2020), "Investigation of hardness characteristics of waste plastics and egg shell powder reinforced polymer composite by stirring route", Mater. Today, 33(4090-4093). https://doi.org/10.1016/j.matpr.2020.06.545.
  3. Bao, Y., Wang, W. and Zhou, Y. (2004), "Investigation of the relationship between elastic modulus and hardness based on depth-sensing indentation measurements", Acta Mater., 52(18), 5397-5404. https://doi.org/10.1016/j.actamat.2004.08.002.
  4. Barba, B.J.D., Madrid, J.F. and Penaloza Jr, D.P. (2020), "A review of abaca fiber-reinforced polymer composites: Different modes of preparation and their applications", J. Chilean Chem. Soc., 65(3), 4919-4924. http://doi.org/10.4067/s0717-97072020000204919
  5. Barbaz-Isfahani, R., Saber-Samandari, S. and Salehi, M. (2022), "Novel electrosprayed enhanced microcapsules with different nanoparticles containing healing agents in a single multicore microcapsule", Int. J. Biol. Macromol., 200, 532-542. https://doi.org/10.1016/j.ijbiomac.2022.01.084.
  6. Briscoe, B., Fiori, L. and Pelillo, E. (1998), "Nano-indentation of polymeric surfaces", J. Phys. D., 31(19), 2395. http://doi.org/10.1088/0022-3727/31/19/006.
  7. Busico, V. and Cipullo, R. (2001), "Microstructure of polypropylene", Prog. Polym. Sci., 26(3), 443-533. https://doi.org/10.1177/0892705711428659.
  8. Cao, L., Youn, I., Guilak, F. and Setton, L.A. (2006), "Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model", J. Biomech. Eng., 128(5), 766-771. https://doi.org/10.1115/1.2246237.
  9. Chen, X., Yan, J. and Karlsson, A.M. (2006), "On the determination of residual stress and mechanical properties by indentation", Mater. Sci. Eng. A, 416(1-2), 139-149. https://doi.org/10.1016/j.msea.2005.10.034.
  10. Das, B., Prasad, K.E., Ramamurty, U. and Rao, C. (2009), "Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene", Nanotechnology, 20(12), 125705. https://doi.org/10.1088/0957-4484/20/12/125705.
  11. Deng, S., Zhang, J., Ye, L. and Wu, J. (2008), "Toughening epoxies with halloysite nanotubes", Polymer, 49(23), 5119-5127. https://doi.org/10.1016/j.polymer.2008.09.027.
  12. El-Rehim, A., Alaa, F., Zahran, H.Y., Habashy, D.M. and Al-Masoud, H.M. (2020), "Simulation and prediction of the vickers hardness of AZ91 magnesium alloy using artificial neural network model", Crystals, 10(4), 290. https://doi.org/10.3390/cryst10040290.
  13. Gitiara, Y., Barbaz-Isfahani, R., Saber-Samandari, S. and Sadighi, M. (2021), "Low-velocity impact behavior of incorporated GFRP composites with nanoclay and nanosilica in a corrosive environment: Experimental and numerical study", J. Compos. Mater., 55(27), 3989-4010. https://doi.org/10.1177%2F00219983211031644. https://doi.org/10.1177%2F00219983211031644
  14. Gross, K.A. and Saber-Samandari, S. (2009), "Revealing mechanical properties of a suspension plasma sprayed coating with nanoindentation", Surface Coatings Technol., 203(20-21), 2995-2999. https://doi.org/10.1016/j.surfcoat.2009.03.007.
  15. Gross, K.A., Saber-Samandari, S. and Heemann, K.S. (2010), "Evaluation of commercial implants with nanoindentation defines future development needs for hydroxyapatite coatings", J. Biomed. Mater. Res. B., 93(1), 1-8. https://doi.org/10.1002/jbm.b.31537.
  16. Guo, X., Liu, Y. and Wang, G. (2021), "Computer modeling for frequency performance of viscoelastic magneto-electro-elastic annular micro/nanosystem via adaptive tuned deep learning neural network optimization", Adv. Nano Res., 11(2), 203-218. https://doi.org/10.12989/anr.2021.11.2.203.
  17. Haj-Ali, R., Kim, H.K., Koh, S.W., Saxena, A. and Tummala, R. (2008), "Nonlinear constitutive models from nanoindentation tests using artificial neural networks", Int. J. Plast., 24(3), 371-396. https://doi.org/10.1016/j.ijplas.2007.02.001.
  18. Hosseinzadeh, A. and Mahmoudi, A. (2017), "Determination of mechanical properties using sharp macro-indentation method and genetic algorithm", Mech. Mater., 114(57-68). https://doi.org/10.1016/j.ijplas.2007.02.001.
  19. Jena, D.K. and Sahoo, P.K. (2019), "New strategies for the construction of eggshell powder reinforced starch based fire hazard suppression biomaterials with tailorable thermal, mechanical and oxygen barrier properties", Int. J. Biol. Macromol., 140(496-504). https://doi.org/10.1016/j.ijbiomac.2019.08.156.
  20. Jirimali, H.D., Chaudhari, B.C., Khanderay, J.C., Joshi, S.A., Singh, V., Patil, A.M. and Gite, V.V. (2018), "Waste eggshell-derived calcium oxide and nanohydroxyapatite biomaterials for the preparation of LLDPE polymer nanocomposite and their thermomechanical study", Polym. Plast. Technol. Eng., 57(8), 804-811. https://doi.org/10.1080/03602559.2017.1354221.
  21. Kamarian, S. and Song, J.I. (2022), "Review of literature on eco-friendly sandwich structures made of non-wood cellulose fibers", J. Sandwich Struct. Mater., 24(3), 1653-1705. https://doi.org/10.1177%2F10996362211062372. https://doi.org/10.1177%2F10996362211062372
  22. Kamarian, S., Yu, R. and Song, J.I. (2022), "Synergistic effects of halloysite nanotubes with metal and phosphorus additives on the optimal design of eco-friendly sandwich panels with maximum flame resistance and minimum weight", Nanotechnol. Rev., 11(1), 252-265. https://doi.org/10.1515/ntrev-2022-0014.
  23. Kang, D.J., Pal, K., Park, S.J., Bang, D.S. and Kim, J.K. (2010), "Effect of eggshell and silk fibroin on styrene-ethylene/butylene-styrene as bio-filler", Mater. Des., 31(4), 2216-2219. https://doi.org/10.1016/j.matdes.2009.10.033.
  24. Khalvandi, A., Mohammadi Aghdam, M. and Saber-Samandari, S. (2022), "Fabrication, experimental study, and 2-D finite element computational homogenization of bone scaffolds under uniaxial and biaxial compressive loadings", Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 236(3-4), 117-128. https://doi.org/10.1177/23977914221082900.
  25. Khalvandi, A., Saber-Samandari, S. and Aghdam, M.M. (2022), "Application of artificial neural networks to predict Young's moduli of cartilage scaffolds: An in-vitro and micromechanical study", Biomater. Adv., 212768. https://doi.org/10.1016/j.bioadv.2022.212768.
  26. Lee, H., Mall, S., He, P., Shi, D., Narasimhadevara, S., Yun, Y.H., Shanov, V. and Schulz, M.J. (2007), "Characterization of carbon nanotube/nanofiber-reinforced polymer composites using an instrumented indentation technique", Compos. Part B Eng., 38(1), 58-65. https://doi.org/10.1016/j.compositesb.2006.04.002.
  27. Lee, J., Almond, D. and Harris (1999), "The use of neural networks for the prediction of fatigue lives of composite materials", Compos. Part A Appl. Sci. Manuf., 30(10), 1159-1169. https://doi.org/10.1016/S1359-835X(99)00027-5.
  28. Li, Z., Shah, A.R., Prabhakar, M. and Song, J.-i. (2017), "Effect of inorganic fillers and ammonium polyphosphate on the flammability, thermal stability, and mechanical properties of abaca-fabric/vinyl ester composites", Fibers Polym., 18(3), 555-562. https://doi.org/10.1007/s12221-017-6859-7.
  29. Liu, K., Takagi, H. and Yang, Z. (2013), "Dependence of tensile properties of abaca fiber fragments and its unidirectional composites on the fragment height in the fiber stem", Compos. Part A Appl. Sci. Manuf., 45(14-22). https://doi.org/10.1016/j.compositesa.2012.09.006.
  30. Liu, M., Guo, B., Zou, Q., Du, M. and Jia, D. (2008), "Interactions between halloysite nanotubes and 2, 5-bis (2-benzoxazolyl) thiophene and their effects on reinforcement of polypropylene/halloysite nanocomposites", Nanotechnology, 19(20), 205709. https://doi.org/10.1088/0957-4484/19/20/205709.
  31. Liu, M., Wu, C., Jiao, Y., Xiong, S. and Zhou, C. (2013), "Chitosan-halloysite nanotubes nanocomposite scaffolds for tissue engineering", J. Mater. Chem. B, 1(15), 2078-2089. https://doi.org/10.1039/C3TB20084A.
  32. Maddah, H.A. (2016), "Polypropylene as a promising plastic: A review", Am. J. Polym. Sci, 6(1), 1-11. https://doi.org/10.5923/j.ajps.20160601.01.
  33. Madsen, B. and Gamstedt, E.K. (2013), "Wood versus plant fibers: Similarities and differences in composite applications", Adv. Mater. Sci. Eng., 2013. https://doi.org/10.1155/2013/564346.
  34. Mahmoudi, A. and Nourbakhsh, S. (2011), "A neural networks approach to characterize material properties using the spherical indentation test", Procedia Eng., 10(3062-3067). https://doi.org/10.1520/JTE20130236.
  35. Mai Nguyen Tran, T., Mn, P., Lee, D.W., Cabo, M., Jr and Song, J.I. (2021), "Polypropylene/abaca fiber eco-composites: Influence of bio-waste additive on flame retardancy and mechanical properties", Polym. Compos., 42(3), 1356-1370. https://doi.org/10.1002/pc.25906.
  36. Manickam, S., Kannan, T.K., Simon, B.L., Rathanasamy, R. and Raj, S.S. (2021), "Influence of Nanoclay on the technical properties of Glass-Abaca hybrid Epoxy composite", Polimeros, 30. https://doi.org/10.1590/0104-1428.08520.
  37. Manickavasagam, V.M., Vijaya Ramnath, B., Elanchezhian, C., Vignesh, V., Vijai Rahul, V., Sathya Narayanan, S.U. and Tamilselvan, V. (2014), "Investigation on compression and hardness properties of abaca and manila hybrid composite", Appl. Mech. Mater., 680, 23-26. https://doi.org/10.4028/www.scientific.net/AMM.680.23.
  38. Massaro, M., Lazzara, G., Milioto, S., Noto, R. and Riela, S. (2017), "Covalently modified halloysite clay nanotubes: synthesis, properties, biological and medical applications", J. Mater. Chem. B, 5(16), 2867-2882. https://doi.org/10.1039/C7TB00316A.
  39. Ming, Y., Zandi, Y., Gholizadeh, M., Oslub, K., Khadimallah, M.A. and Issakhov, A. (2021), "Computer simulation for stability performance of sandwich annular system via adaptive tuned deep learning neural network optimization", Adv. Nano Res., 11(1), 83-99. https://doi.org/10.12989/anr.2021.11.1.083.
  40. Molazemhosseini, A., Tourani, H., Naimi-Jamal, M. and Khavandi, A. (2013), "Nanoindentation and nanoscratching responses of PEEK based hybrid composites reinforced with short carbon fibers and nano-silica", Polym. Test., 32(3), 525-534. https://doi.org/10.1016/j.polymertesting.2013.02.001.
  41. Naumenko, E.A., Guryanov, I.D., Yendluri, R., Lvov, Y.M. and Fakhrullin, R.F. (2016), "Clay nanotube-biopolymer composite scaffolds for tissue engineering", Nanoscale, 8(13), 7257-7271. https://doi.org/10.1039/C6NR00641H.
  42. Ochi, S. (2006), "Development of high strength biodegradable composites using Manila hemp fiber and starch-based biodegradable resin", Compos. Part A Appl. Sci. Manuf., 37(11), 1879-1883. https://doi.org/10.1016/j.compositesa.2005.12.019.
  43. Oliver, W.C. and Pharr, G.M. (1992), "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments", J. Mater. Res., 7(6), 1564-1583. https://doi.org/10.1557/JMR.1992.1564.
  44. Oliver, W.C. and Pharr, G.M. (2004), "Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology", J. Mater. Res., 19(1), 3-20. https://doi.org/10.1557/jmr.2004.19.1.3.
  45. Pharr, G.M., Strader, J.H. and Oliver, W. (2009), "Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement", J. Mater. Res., 24(3), 653-666. https://doi.org/10.1557/jmr.2009.0096.
  46. Saber-Samandari, S., Berndt, C.C. and Gross, K.A. (2011), "Selection of the implant and coating materials for optimized performance by means of nanoindentation", Acta biomaterialia, 7(2), 874-881. https://doi.org/10.1016/j.actbio.2010.09.023.
  47. Saber-Samandari, S. and Gross, K.A. (2009a), "Effect of angled indentation on mechanical properties", J. Eur. Ceram. Soc., 29(12), 2461-2467. https://doi.org/10.1016/j.jeurceramsoc.2009.03.010.
  48. Saber-Samandari, S. and Gross, K.A. (2009b), "Micromechanical properties of single crystal hydroxyapatite by nanoindentation", Acta Biomaterialia, 5(6), 2206-2212. https://doi.org/10.1016/j.actbio.2009.02.009.
  49. Saber-Samandari, S. and Gross, K.A. (2009c), "Nanoindentation reveals mechanical properties within thermally sprayed hydroxyapatite coatings", Surface Coat. Technol., 203(12), 1660-1664. https://doi.org/10.1016/j.surfcoat.2008.12.025.
  50. Santos, A.C., Ferreira, C., Veiga, F., Ribeiro, A.J., Panchal, A., Lvov, Y. and Agarwal, A. (2018), "Halloysite clay nanotubes for life sciences applications: From drug encapsulation to bioscaffold", Adv. Colloid Interf. Sci., 257(58-70). https://doi.org/10.1016/j.cis.2018.05.007.
  51. Sarhadi, A., Albuquerque, R.Q., Demleitner, M., Ruckdaschel, H. and Eder, M.A. (2022), "Machine learning based thermal imaging damage detection in glass-epoxy composite materials", Compos. Struct., 115786. https://doi.org/10.1016/j.compstruct.2022.115786.
  52. Sfarra, S., Ibarra-Castanedo, C., Santulli, C., Sarasini, F., Ambrosini, D., Paoletti, D. and Maldague, X. (2013), "Eco-Friendly laminates: From the indentation to non- destructive evaluation by optical and infrared monitoring techniques", Strain, 49(2), 175-189. https://doi.org/10.1111/str.12026.
  53. Shah, A.R., Lee, D.W., Kim, S., Kim, B.S. and Song, J.I. (2013), "Tensile and fire retardant properties of nanoclay reinforced Abaca/Polypropylene composite", Proceedings of the 2013 International Conference on Aerospace Science & Engineering (ICASE), IEEE, 1-5., August. https://doi.org/10.1109/ICASE.2013.6785562.
  54. Shaik, M.S. and Subramanian, H.S. (2021), "An experimental investigation on low-velocity impact response of abaca/epoxy bio-composite", J. Natural Fiber., 1-16. https://doi.org/10.1080/15440478.2021.1941485.
  55. Shokrieh, M., Hosseinkhani, M., Naimi-Jamal, M. and Tourani, H. (2013), "Nanoindentation and nanoscratch investigations on graphene-based nanocomposites", Polym. Test., 32(1), 45-51. https://doi.org/10.1016/j.polymertesting.2012.09.001.
  56. Shubhra, Q.T., Alam, A.M. and Quaiyyum, M.A. (2013), "Mechanical properties of polypropylene composites: A review", J. Thermoplast. Compos. Mater., 26(3), 362-391. https://doi.org/10.1016/S0079-6700(00)00046-0.
  57. Sun, R., Fang, J., Goodwin, A., Lawther, J. and Bolton, A. (1998), "Isolation and characterization of polysaccharides from abaca fiber", J. Agric. Food Chem., 46(7), 2817-2822. https://pubs.acs.org/doi/abs/10.1021/jf9710894.
  58. Tsai, W.T., Yang, J.M., Lai, C.W., Cheng, Y.H., Lin, C.C. and Yeh, C.W. (2006), "Characterization and adsorption properties of eggshells and eggshell membrane", Bioresour. Technol., 97(3), 488-493. https://doi.org/10.1016/j.biortech.2005.02.050.
  59. Uddin, M.N., Li, L.Z., Ahmed, A. and Almajhali, K.Y.M. (2022), "Prediction of PVA fiber effect in Engineered Composite cement (ECC) by Artificial neural Network (ANN)", Mater. Today Proc., 65, 537-542. https://doi.org/10.1016/j.matpr.2022.03.088
  60. Vasquez, J.Z. and Diaz, L.J.L. (2017), "Unidirectional abaca fiber reinforced thermoplastic starch composite", Mater. Sci. Forum, 894, 56-61. https://doi.org/10.4028/www.scientific.net/MSF.894.56
  61. Vassilopoulos, A.P., Georgopoulos, E.F. and Dionysopoulos, V. (2007), "Artificial neural networks in spectrum fatigue life prediction of composite materials", Int. J. Fatigue, 29(1), 20-29. https://doi.org/10.1016/j.ijfatigue.2006.03.004.
  62. Vijaya Ramnath, B., Manickavasagam, V., Elanchezhian, C., Santhosh Shankar, A., Sundarrajan, R., Vickneshwaran, S. and Pithchai Pandian, S. (2014), "Investigation on flexural and impact properties of abaca and Manila hybrid composite", Adv. Mater. Res., 1051, 102-106. https://doi.org/10.4028/www.scientific.net/AMR.1051.102.
  63. Vijayalakshmi, K., Neeraja, C.Y., Kavitha, A. and Hayavadana, J. (2014), "Abaca fibre", Transact. Eng. Sci., 2(9), 16-19.
  64. Vilaseca, F., Valadez-Gonzalez, A., Herrera-Franco, P.J., Pelach, M.A ., Lopez, J.P. and Mutje, P. (2010), "Biocomposites from abaca strands and polypropylene, Part I: Evaluation of the tensile properties", Bioresour. Technol., 101(1), 387-395. https://doi.org/10.1016/j.biortech.2009.07.066.
  65. Wang, X. and Zhang, L. (2021), "Physics-informed neural networks: A deep learning framework for solving the vibrational problems", Adv. Nano Res., 11(5), 495-519. https://doi.org/10.12989/anr.2021.11.5.495.
  66. Wu, W., Cao, X., Zhang, Y. and He, G. (2013), "Polylactide/halloysite nanotube nanocomposites: Thermal, mechanical properties, and foam processing", J. Appl. Polym. Sci., 130(1), 443-452. https://doi.org/10.1002/app.39179.
  67. Xu, Z., Chu, Z., Yan, L., Chen, H., Jia, H. and Tang, W. (2019), "Effect of chicken eggshell on the flame-retardant and smoke suppression properties of an epoxy-based traditional APP-PER-MEL system", Polym. Compos., 40(7), 2712-2723. https://doi.org/10.1002/pc.25077.