DOI QR코드

DOI QR Code

와이어-평판 형태의 전기집진기식 바이오-에어로졸 포집기 성능 수치해석: 이온풍의 영향

Numerical Analysis on Wire-Plate Electrostatic Precipitator Performance for Bioaerosol Capture: Effect of Ionic Wind

  • 최현식 (연세대학교 기계공학과) ;
  • 유기현 (연세대학교 기계공학과) ;
  • 황정호 (연세대학교 기계공학과)
  • Hyun Sik Choi (Department of Mechanical Engineering, Yonsei University) ;
  • Gihyeon Yu (Department of Mechanical Engineering, Yonsei University) ;
  • Jungho Hwang (Department of Mechanical Engineering, Yonsei University)
  • 투고 : 2023.06.23
  • 심사 : 2023.08.07
  • 발행 : 2023.09.30

초록

In our previous study, a wire-plate type electrostatic precipitator (ESP) was developed to collect bioaerosols of 100 nm size. In the study, various flow rates (40 ~ 100 L/min) and applied voltages (3 ~ 10 kV) were tested for experiment. In this study, numerical analysis was performed for the ESP of the previous study with the same flow rates and applied voltages, but with varying the size of bioaerosols to 0.04 ~ 2.5 ㎛. Overall, the numerical analysis results well predicted the experimental data. Bioaerosols of 0.1 ~ 0.5 ㎛ showed the minimum collection efficiency for all conditions because of low charge number. The effect of the ionic wind generated by the corona discharge was calculated. However, the ionic wind did not affect much the collection efficiency. The aerosol collection in the ESP of this study was due to the electrostatic force generated by particle charge in the electric field. This numerical study on the ESP can be used for the design and optimization of higher flow rate (> 100 L/min) ESP.

키워드

과제정보

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구과제입니다. (No. 20181110200170)

참고문헌

  1. Adamiak, K. (2013). Numerical models in simulating wire-plate electrostatic precipitators: A review. Journal of Electrostatics, 71(4), 673-680. https://doi.org/10.1016/j.elstat.2013.03.001
  2. Ahmad, S. T., & Smail, J. M. (2018). The Optimum Operation Conditions for Electrostatic Precipitator (ESP) in Particulate Emitter Industries. In 2018 International Conference on Pure and Applied Science. http://dx.doi.org/10.14500/icpas2018.nmt106
  3. Biskos, G., Reavell, K., & Collings, N. (2005). Electrostatic characterisation of corona- wire aerosol chargers. Journal of Electrostatics, 63(1), 69-82. https://doi.org/10.1016/j.elstat.2004.07.001
  4. Burton, N. C., Grinshpun, S. A., & Reponen, T. (2007). Physical collection efficiency of filter materials for bacteria and viruses. The Annals of occupational hygiene, 51(2), 143-151. https://doi.org/10.1093/annhyg/mel073
  5. Chen, B., Jia, P., & Han, J. (2021). Role of indoor aerosols for COVID-19 viral transmission: a review. Environmental chemistry letters, 19, 1953-1970. https://doi.org/10.1007/s10311-020-01174-8
  6. Cho, Y. S., Hong, S. C., Choi, J., & Jung, J. H. (2019). Development of an automated wet-cyclone system for rapid, continuous and enriched bioaerosol sampling and its application to real-time detection. Sensors and Actuators B: Chemical, 284, 525-533. https://doi.org/10.1016/j.bios.2021.113499
  7. Cho, Y. S., Kim, H. R., Ko, H. S., Jeong, S. B., Chan Kim, B., & Jung, J. H. (2020). Continuous surveillance of bioaerosols on-site using an automated bioaerosol-monitoring system. ACS sensors, 5(2), 395-403. https://pubs.acs.org/doi/10.1021/acssensors.9b02001.
  8. Choi, H. S., & Hwang, J. (2021). Reduction of submicron-sized aerosols emission in electrostatic precipitation by electrical attraction with micron-sized aerosols. Powder Technology, 377, 882-889. https://doi.org/10.1016/j.powtec.2020.09.031
  9. Cowling, B. J., Ip, D. K., Fang, V. J., Suntarattiwong, P., Olsen, S. J., Levy, J., ... & Mark Simmerman, J. (2013). Aerosol transmission is an important mode of influenza A virus spread. Nature communications, 4(1), 1-6. DOI:10.1038/ncomms2922 | www.nature.com/naturecommunications
  10. Douwes, J., Thorne, P., Pearce, N., & Heederik, D. (2003). Bioaerosol health effects and exposure assessment: progress and prospects. Annals of Occupational Hygiene, 47(3), 187-200. https://doi.org/10.1093/annhyg/meg032
  11. Gao, W., Wang, Y., Zhang, H., Guo, B., Zheng, C., Guo, J., ... & Yu, A. (2020). A numerical investigation of the effect of dust layer on particle migration in an electrostatic precipitator. Aerosol and Air Quality Research, 20(1), 166-179. https://doi.org/10.4209/aaqr.2019.11.0609
  12. Go, D. B., Maturana, R. A., Fisher, T. S., & Garimella, S. V. (2008). Enhancement of external forced convection by ionic wind. International Journal of Heat and Mass Transfer, 51(25-26), 6047-6053. https://doi.org/10.1016/j.ijheatmasstransfer.2008.05.012
  13. Griffiths, D. J., & Colleger, R. (1999). Introduction to Electrodynamics Prentice Hall Upper Saddle River. New Jersey, 7458.
  14. Heo, K. J., Ko, H. S., Jeong, S. B., Kim, S. B., & Jung, J. H. (2021). Enriched aerosol-to-hydrosol transfer for rapid and continuous monitoring of bioaerosols. Nano Letters, 21(2), 1017-1024. https://doi.org/10.1021/acs.nanolett.0c04096
  15. Hilgenfeld, R., & Peiris, M. (2013). From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses. Antiviral research, 100(1), 286-295. https://doi.org/10.1016/j.antiviral.2013.08.015
  16. Hinds, W. C., & Zhu, Y. (2022). Aerosol technology: properties, behavior, and measurement of airborne particles. John Wiley & Sons.
  17. Hong, S., Kim, M. W., & Jang, J. (2021). Physical collection and viability of airborne bacteria collected under electrostatic field with different sampling media and protocols towards rapid detection. Scientific Reports, 11(1), 14598. https://doi.org/10.1038/s41598-021-94033-7
  18. Jaworek, A., Marchewicz, A., Sobczyk, A. T., Krupa, A., & Czech, T. (2018). Two-stage electrostatic precipitators for the reduction of PM2. 5 particle emission. Progress in Energy and Combustion Science, 67, 206-233. https://doi.org/10.1016/j.pecs.2018.03.003
  19. Jeong, S. B., Shin, J. H., Kim, S. W., Seo, S. C., & Jung, J. H. (2023). Performance evaluation of an electrostatic precipitator with a copper plate using an aerosolized SARS-CoV-2 surrogate (bacteriophage phi 6). Environmental Technology & Innovation, 30, 103124. https://doi.org/10.1016/j.eti.2023.103124
  20. Kettleson, E. M., Ramaswami, B., Hogan Jr, C. J., Lee, M. H., Statyukha, G. A., Biswas, P., & Angenent, L. T. (2009). Airborne virus capture and inactivation by an electrostatic particle collector. Environmental Science & Technology, 43(15), 5940-5946. https://doi.org/10.1021/es803289w
  21. Kim, H. R., An, S., & Hwang, J. (2021). High air flow-rate electrostatic sampler for the rapid monitoring of airborne coronavirus and influenza viruses. Journal of Hazardous Materials, 412, 125219. https://doi.org/10.1016/j.jhazmat.2021.125219
  22. Kim, S., Tae, U. Y., & Hwang, J. (2020). Numerical investigation of the separation mechanism in an electrostatic aerosol-to-hydrosol separator by glow corona discharge: a quantitative comparison of the effects of ionic wind and Coulomb force. Plasma Sources Science and Technology, 29(7), 075008. DOI 10.1088/1361-6595/ab993b
  23. Klepeis, N. E., Nelson, W. C., Ott, W. R., Robinson, J. P., Tsang, A. M., Switzer, P., ... & Engelmann, W. H. (2001). The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of Exposure Science & Environmental Epidemiology, 11(3), 231-252. DOI: 10.1038/sj.jea.7500165
  24. Li, J., Leavey, A., Wang, Y., O'Neil, C., Wallace, M. A., Burnham, C. A. D., ... & Biswas, P. (2018). Comparing the performance of 3 bioaerosol samplers for influenza virus. Journal of aerosol science, 115, 133-145. https://doi.org/10.1016/j.jaerosci.2017.08.007
  25. Liang, W. J., & Lin, T. H. (1994). The characteristics of ionic wind and its effect on electrostatic precipitators. Aerosol Science and Technology, 20(4), 330-344. https://doi.org/10.1080/02786829408959689
  26. Liu, B. Y. H., & Kapadia, A. (1978). Combined field and diffusion charging of aerosol particles in the continuum regime. Journal of Aerosol Science, 9(3), 227-242. https://doi.org/10.1016/0021-8502(78)90045-9
  27. Moon, J., & Ryu, B. H. (2021). Transmission risks of respiratory infectious diseases in various confined spaces: A meta-analysis for future pandemics. Environmental Research, 202, 111679. https://doi.org/10.1016/j.envres.2021.111679
  28. Park, J. W., Kim, H. R., & Hwang, J. (2016). Continuous and real-time bioaerosol monitoring by combined aerosol-to-hydrosol sampling and ATP bioluminescence assay. Analytica Chimica Acta, 941, 101-107. https://doi.org/10.1016/j.aca.2016.08.039
  29. Peccia, J., Milton, D. K., Reponen, T., & Hill, A. J. (2008). A role for environmental engineering and science in preventing bioaerosol-related disease. Environmental Science & Technology, 42(13), 4631-4637. https://doi.org/10.1021/es087179e
  30. Priyamvada, H., Kumaragama, K., Chrzan, A., Athukorala, C., Sur, S., & Dhaniyala, S. (2021). Design and evaluation of a new electrostatic precipitation-based portable low-cost sampler for bioaerosol monitoring. Aerosol Science and Technology, 55(1), 24-36. https://doi.org/10.1080/02786826.2020.1812503
  31. Reist, P. C. (1993). Aerosol science and technology, 2nd Edition. McGraw-Hill, Singapore.
  32. Rickard, M., Dunn-Rankin, D., Weinberg, F., & Carleton, F. (2005). Characterization of ionic wind velocity. Journal of Electrostatics, 63(6-10), 711-716. https://doi.org/10.1016/j.elstat.2005.03.033
  33. Wang, C., Horby, P. W., Hayden, F. G., & Gao, G. F. (2020). A novel coronavirus outbreak of global health concern. The lancet, 395(10223), 470-473. https://doi.org/10.1016/S0140-6736(20)30185-9
  34. Zehtabiyan-Rezaie, N., Saffar-Avval, M., & Adamiak, K. (2018). Numerical investigation of water surface deformation due to corona discharge. Journal of Electrostatics, 96, 151-159. https://doi.org/10.1016/j.elstat.2018.10.015