DOI QR코드

DOI QR Code

Design and Performance Evaluation using Computational Fluid Dynamics (CFD) Analysis of Wetcyclones for the Collection of Airborne Bacteria

공기 중 박테리아 포집을 위한 습식 사이클론의 CFD 해석을 이용한 설계 및 성능 평가

  • Hyun Sik Ko (Department of Mechanical Engineering, Yonsei University) ;
  • Jungwoo Park (Department of Mechanical Engineering, Yonsei University) ;
  • Jiwoo Jung (Department of Mechanical Engineering, Yonsei University) ;
  • Jungho Hwang (Department of Mechanical Engineering, Yonsei University)
  • 고현식 (연세대학교 기계공학과) ;
  • 박정우 (연세대학교 기계공학과) ;
  • 정지우 (연세대학교 기계공학과) ;
  • 황정호 (연세대학교 기계공학과)
  • Received : 2023.06.23
  • Accepted : 2023.08.21
  • Published : 2023.09.30

Abstract

We present the development of a wetcyclone sampler designed for the sampling of airborne bacteria. The wetcyclone design involves a combination of two traditional cyclone shapes and computational fluid dynamics (CFD) analysis to validate its effectiveness in terms of pressure drop and collection efficiency. The wetcyclone exhibits a collection efficiency of over 90% for bacteria, specifically targeting Staphylococcus aureus. Additionally, the wetcyclone enables continuous bioaerosol sampling using a liquid medium (deionized water), demonstrating a concentration ratio exceeding >105 and a stable microbial recovery rate of 81.9%. The application of real-time quantitative polymerase chain reaction (qPCR) and the colony counting method ensures precise measurement of the concentration ratio and microbial recovery rate.

Keywords

Acknowledgement

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구과제입니다. (No. 20181110200170)

References

  1. Antonyuk, S., Heinrich, S., Deen, N., & Kuipers, H. (2009). Influence of liquid layers on energy absorption during particle impact. Particuology, 7(4), 245-259., https://doi.org/10.1016/j.partic.2009.04.006
  2. Burger, H. (1990). Bioaerosols: prevalence and health effects in the indoor environment. Journal of Allergy and Clinical Immunology, 86(5), 687-701., https://doi.org/10.1016/S0091-6749(05)80170-8
  3. Bush, R. K., & Portnoy, J. M. (2001). The role and abatement of fungal allergens in allergic diseases. Journal of Allergy and Clinical Immunology, 107(3), S430-S440., https://doi.org/10.1067/mai.2001.113669
  4. Corman, V. M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D. K., ... & Drosten, C. (2020). Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance, 25(3), 2000045., https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045
  5. Dabrazhynetskaya, A., Volokhov, D. V., David, S. W., Ikonomi, P., Brewer, A., Chang, A., & Chizhikov, V. (2011). Preparation of reference strains for validation and comparison of mycoplasma testing methods. Journal of applied microbiology, 111(4), 904-914., https://doi.org/10.1111/j.1365-2672.2011.05108.x
  6. Daher, N., Ning, Z., Cho, A. K., Shafer, M., Schauer, J. J., & Sioutas, C. (2011). Comparison of the chemical and oxidative characteristics of particulate matter (PM) collected by different methods: filters, impactors, and biosamplers. Aerosol Science and Technology, 45(11), 1294-1304., https://doi.org/10.1080/02786826.2011.590554
  7. Douwes, J., Thorne, P., Pearce, N., & Heederik, D. (2003). Bioaerosol health effects and exposure assessment: progress and prospects. The Annals of occupational hygiene, 47(3), 187-200., https://doi.org/10.1093/annhyg/meg032
  8. Heo, K. J., Ko, H. S., Jeong, S. B., Kim, S. B., & Jung, J. H. (2021). Enriched aerosol-to-hydrosol transfer for rapid and continuous monitoring of bioaerosols. Nano Letters, 21(2), 1017-1024., https://doi.org/10.1021/acs.nanolett.0c04096
  9. Hong, S., Bhardwaj, J., Han, C. H., & Jang, J. (2016). Gentle sampling of submicrometer airborne virus particles using a personal electrostatic particle concentrator. Environmental Science & Technology, 50(22), 12365-12372., https://doi.org/10.1021/acs.est.6b03464
  10. Jeong, S. B., Ko, H. S., Heo, K. J., Shin, J. H., & Jung, J. H. (2022). Size distribution and concentration of indoor culturable bacterial and fungal bioaerosols. Atmospheric Environment: X, 15, 100182., https://doi.org/10.1016/j.aeaoa.2022.100182
  11. Jeong, S. B., Heo, K. J., Ko, H. S., Ahn, J. P., Lee, S. B., & Jung, J. H. (2021). Evaluation of survival rates of airborne microorganisms on the filter layers of commercial face masks. Indoor air, 31(4), 1134-1143., https://doi.org/10.1111/ina.12816
  12. Kairova, M., & Rakhimzhanova, D. (2021). Molecular genetic techniques and oligonucleotides for mycoplasma identification-a review. Acta Veterinaria Brno, 89(4), 317-332., https://doi.org/10.2754/avb202089040317
  13. Kim, H. R., An, S., & Hwang, J. (2020). Aerosol-to-hydrosol sampling and simultaneous enrichment of airborne bacteria for rapid biosensing. ACS sensors, 5(9), 2763-2771., https://doi.org/10.1021/acssensors.0c00555
  14. Korea Ministry of Environment (KME) (2018). Enforcement Rules of the Indoor Air Quality Control Act.
  15. Lapple, C. E. (1950). Gravity and centrifugal separation. American Industrial Hygiene Association Quarterly, 11(1), 40-48., https://doi.org/10.1080/00968205009344283
  16. Lee, S. A., & Liao, C. H. (2014). Size-selective assessment of agricultural workers' personal exposure to airborne fungi and fungal fragments. Science of the total environment, 466, 725-732., https://doi.org/10.1016/j.scitotenv.2013.07.104
  17. Lin, X., Reponen, T., Willeke, K., Wang, Z., Grinshpun, S. A., & Trunov, M. (2000). Survival of airborne microorganisms during swirling aerosol collection. Aerosol Science & Technology, 32(3), 184-196., https://doi.org/10.1080/027868200303722
  18. Oh, J., Choi, J., Massoudifarid, M., Park, J. Y., Hwang, J., Lim, J., & Byeon, J. H. (2023). Size-classified monitoring of ATP bioluminescence for rapid assessment of biological distribution in airborne particulates. Biosensors and Bioelectronics, 115356., https://doi.org/10.1016/j.bios.2023.115356
  19. Rao, C. Y., Burge, H. A., & Chang, J. C. (1996). Review of quantitative standards and guidelines for fungi in indoor air. Journal of the Air & Waste Management Association, 46(9), 899-908., https://doi.org/10.1080/10473289.1996.10467526
  20. Sgrott Jr, O. L., Noriler, D., Wiggers, V. R., & Meier, H. F. (2015). Cyclone optimization by COMPLEX method and CFD simulation. Powder Technology, 277, 11-21., https://doi.org/10.1016/j.powtec.2015.02.039
  21. Shepherd, C. B., & Lapple, C. E. (1940). Flow pattern and pressure drop in cyclone dust collectors cyclone without intel vane. Industrial & Engineering Chemistry, 32(9), 1246-1248., https://doi.org/10.1021/ie50356a012
  22. Stairmand, C. J. (1951). The design and performanceof cyclone separators. Trans. Instn. Chem. Engrs., 29, 356-383.
  23. Sung, G., Kim, H. U., Shin, D., Shin, W. G., & Kim, T. (2018). High efficiency axial wet cyclone air sampler. Aerosol and Air Quality Research, 18(10), 2529-2537., https://doi.org/10.4209/aaqr.2017.12.0596
  24. Tan, M., Shen, F., Yao, M., & Zhu, T. (2011). Development of an automated electrostaticsampler (AES) for bioaerosol detection. Aerosol Science and Technology, 45(9), 1154-1160., https://doi.org/10.1080/02786826.2011.582193
  25. Weber, S., Greiner, R., Bartes, A., Kavermann, H., Knack, Y., & Deutschmann, S. (2021). Validation of the MycoTOOL mycoplasma real-time PCR kit.
  26. Wu, Y., Shen, F., & Yao, M. (2010). Use of gelatin filter and BioSampler in detecting airborne H5N1 nucleotides, bacteria and allergens. Journal of Aerosol Science, 41(9), 869-879., https://doi.org/10.1016/j.jaerosci.2010.05.006