DOI QR코드

DOI QR Code

전기역학적 스크린을 이용한 집진판 표면 위 입자 세정성능 연구

A study on cleaning performance of particles on collection plates using an electrodynamic screen

  • 조윤희 (한국기계연구원 지속가능환경연구실) ;
  • 신동호 (한국기계연구원 지속가능환경연구실) ;
  • 김영훈 (한국기계연구원 지속가능환경연구실) ;
  • 박인용 (한국기계연구원 지속가능환경연구실) ;
  • 김상복 (한국기계연구원 지속가능환경연구실) ;
  • 이건희 (한국기계연구원 지속가능환경연구실) ;
  • 한방우 (한국기계연구원 지속가능환경연구실)
  • Yunhui Joe (Department of Sustainable Environment Research, Korea Institute of Machinery & Materials) ;
  • Dongho Shin (Department of Sustainable Environment Research, Korea Institute of Machinery & Materials) ;
  • Younghun Kim (Department of Sustainable Environment Research, Korea Institute of Machinery & Materials) ;
  • Inyong Park (Department of Sustainable Environment Research, Korea Institute of Machinery & Materials) ;
  • Sang Bok Kim (Department of Sustainable Environment Research, Korea Institute of Machinery & Materials) ;
  • Gunhee Lee (Department of Sustainable Environment Research, Korea Institute of Machinery & Materials) ;
  • Bangwoo Han (Department of Sustainable Environment Research, Korea Institute of Machinery & Materials)
  • 투고 : 2023.06.02
  • 심사 : 2023.07.27
  • 발행 : 2023.09.30

초록

An electrostatic precipitator (ESP) has a low pressure drop and a high collection efficiency but its collection efficiency can be reduced due to dust accumulation on the collection plates during long-term operations. In order to maintain the initial dust collection efficiency, it is necessary to periodically clean the collection plates. The common cleaning methods are using physical impacts or water sprays. These cleaning methods can lead to damage to the collection plate or generate wastewater. Herein, we implemented an electrodynamic screen (EDS) for ESP cleaning and evaluated its surface cleaning performance of particles. The EDS is an electrostatic system that can electrostatically repel particles on surfaces, allowing it to clean the ESP without causing damage and wastewater generation. Our evaluation included the analysis of the effects of AC voltage characteristics, electrode configuration and environmental conditions on the cleaning performance of the EDS with the aim of achieving effective surface cleaning. It has been demonstrated that activating the EDS cleans up to 65% of the particles on the surface, which indicates about 94% of our target cleaning zone.

키워드

과제정보

본 연구는 2023년도 산업통상자원부 및 한국산업기술평가관리원 (KEIT) 연구비 지원으로 수행하였고, 이에 감사드립니다. (grant no. 20007027)

참고문헌

  1. Busnaina, A. A., & Elsawy, T. (2000). The effect of relative humidity on particle adhesion and removal. The Journal of Adhesion, 74(1-4), 391-409. https://doi.org/10.1080/00218460008034538
  2. Bernard, A. R., Eriksen, R., Horenstein, M. N., and Mazumder, M. K. (2018). Dust settles, we don't: The electrodynamic screen-A self-cleaning technology for concentrated solar power mirrors and photovoltaic panels, MRS Energy and Sustainability, 5, E12. https://doi.org/10.1557/mre.2018.12
  3. Chen, C. C., & Tao, C. J. (2000). Condensation of supersaturated water vapor on submicrometer particles of SiO2 and TiO2, The Journal of Chemical Physics, 112(22), 9967-9977. https://doi.org/10.1063/1.481633
  4. Cid, N., Rico, J. J., Perez-Orozco, R., and Larranaga, A. (2021). Experimental study of the performance of a laboratory-scale esp with biomass combustion: discharge electrode disposition, dynamic control unit and aging effect, Sustainability, 13(18), 10344. https://doi.org/10.3390/su131810344
  5. Calderon-Garciduenas, L., and Ayala, A. (2022). Air pollution, ultrafine particles, and your brain: are combustion nanoparticle emissions and engineered nanoparticles causing preventable fatal neurodegenerative diseases and common neuropsychiatric outcomes?, Environmental Science and Technology, 56(11), 6847-6856. https://doi.org/10.1021/acs.est.1c04706
  6. Engelbrecht, H. L. (1981). Rapping systems for collecting surfaces in an electrostatic precipitator, Environment International, 6(1-6), 297-305. https://doi.org/10.1016/0160-4120(81)90039-8
  7. Gray, P. R., Hurst, P. J., Lewis, S. H., and Meyer, R. G. (2009). Analysis and design of analog integrated circuits, 5th ed. John Wiley & Sons.
  8. Hall, H. J., and Katz, J. (1976). Corrosion problems and solutions for electrostatic precipitators, Journal of the Air Pollution Control Association, 26(4), 312-317. https://doi.org/10.1080/00022470.1976.10470255
  9. Huang, S. H., and Chen, C. C. (2003). Loading characteristics of a miniature wire-plate electrostatic precipitator, Aerosol science and technology, 37(2), 109-121. https://doi.org/10.1080/02786820300950
  10. Hinds, W. C., and Zhu, Y. (2022). Aerosol technology: properties, behavior, and measurement of airborne particles, John Wiley and Sons.
  11. Jones, D., Bernard, A. R., Hoffman, M., Chang, S., Wilkins, C., Eriksen, R., Ellinger, C., Garner, S., Rothacker, A., Theelen, C., and Mazumder, M. (2020). Transparent Electrodynamic Screen (EDS) Films-Industrial Production and Lamination onto PV Modules and CSP Mirrors for Self Cleaning Function, MRS Advances, 5(50), 2595-2602. https://doi.org/10.1557/adv.2020.351
  12. Kim, H. J., Han, B. W., Hong, W. S., Shin, W. H., Song, D. K., Jung, S. H., Kim Y. J., Oh, W. S., Hwang, K. D., and Yoo, S. Y. (2010). Evaluation of fine-particle removal performance of novel ESP with highly durable chargers and collectors, Transactions of the Korean Society of Mechanical Engineers B, 34(4), 423-428. https://doi.org/10.3795/KSME-B.2010.34.4.423
  13. Kawamoto, H., and Miwa, T. (2011). Mitigation of lunar dust adhered to mechanical parts of equipment used for lunar exploration, Journal of Electrostatics, 69(4), 365-369. https://doi.org/10.1016/j.elstat.2011.04.015
  14. Kim, H. J., Han, B., Kim, Y. J., Hwang, K. D., Oh, W. S., Yoo, S. Y., and Oda, T. (2011). Fine particle removal performance of a two-stage wet electrostatic precipitator using a nonmetallic pre-charger, Journal of the air and waste management association, 61(12), 1334-1343. https://doi.org/10.1080/10473289.2011.603994
  15. Kawamoto, H., and Shibata, T. (2015). Electrostatic cleaning system for removal of sand from solar panels, Journal of Electrostatics, 73, 65-70. https://doi.org/10.1016/j.elstat.2014.10.011
  16. Lin, G. Y., Tsai, C. J., Chen, S. C., Chen, T. M., and Li, S. N. (2010). An efficient single-stage wet electrostatic precipitator for fine and nanosized particle control, Aerosol Science and Technology, 44(1), 38-45. https://doi.org/10.1080/02786820903338298
  17. Lopuszanska, U., and Samardakiewicz, M. (2020). The relationship between air pollution and cognitive functions in children and adolescents: a systematic review, Cognitive and Behavioral Neurology, 33(3), 157-178. https://doi.org/10.1097/WNN.0000000000000235
  18. Lee, H., Sung, J. H., Kim, M., Kim, Y. S., Lee, Y., Kim, Y. J., Han, B., and Kim, H. J. (2022). Development of electrostatic-precipitator-type air conditioner for reduction of fine particulate matter in subway, IEEE Transactions on Industry Applications, 58(3), 3992-3998. https://doi.org/10.1109/TIA.2022.3160125
  19. Mizuno, A. (2000). Electrostatic precipitation. IEEE Transactions on dielectrics and electrical insulation, 7(5), 615-624. https://doi.org/10.1109/94.879357
  20. Mazumder, M. K., Sharma, R., Biris, A. S., Zhang, J., Calle, C., and Zahn, M. (2007). Self-cleaning transparent dust shields for protecting solar panels and other devices, Particulate Science and Technology, 25(1), 5-20. https://doi.org/10.1080/02726350601146341
  21. Miller, B. G. (2010). Advanced flue gas dedusting systems and filters for ash and particulate emissions control in power plants, In Advanced power plant materials, design and technology, 217-243. https://doi.org/10.1533/9781845699468.2.217
  22. Minji Lee, Ji-Hye Kim, and Hyung-jun Koo. (2019). Dielectrophoresis for Control of Particle Transport: Theory, Electrode Designs and Applications, Korean Chemical Engineering Research, 57(2), 149-163. https://doi.org/10.9713/kcer.2019.57.2.149
  23. Park, B. H., Kim, S. B., Jo, Y. M., and Lee, M. H. (2012). Filtration characteristics of fine particulate matters in a PTFE/glass composite bag filter, Aerosol and Air Quality Research, 12(5), 1030-1036. https://doi.org/10.4209/aaqr.2012.03.0071
  24. PTI, (2016). Arizona Test Dust (ATD) Safety Data Sheet. www.powdertechnologyinc.com/wp-content/uploads/2012/08/SDS.01.Arizona-Test-Dust.4-Feb-2016.pdf
  25. PTI (2016). ISO 12103-1 ARIZONA TEST DUST CONTAMINANTS A2 FINE GRADES https://www.powdertechnologyinc.com/product/iso-12103-1-a2-fine-test-dust/
  26. Pethig, R. (2016). Where is dielectrophoresis (DEP) going?, Journal of The Electrochemical Society, 164(5), B3049. http://doi.org/10.1149/2.0071705jes
  27. Pun, V. C., Kazemiparkouhi, F., Manjourides, J., and Suh, H. H. (2017). Long-term PM2.5 exposure and respiratory, cancer, and cardiovascular mortality in older US adults, American journal of epidemiology, 186(8), 961-969. https://doi.org/10.1093/aje/kwx166
  28. Thomas, D., Penicot, P., Contal, P., Leclerc, D., and Vendel, J. (2001). Clogging of fibrous filters by solid aerosol particles experimental and modelling study, Chemical Engineering Science, 56(11), 3549-3561. https://doi.org/10.1016/S0009-2509(01)00041-0
  29. Teng, C., and Li, J. (2020). Experimental study on particle removal of a wet electrostatic precipitator with atomization of charged water drops, Energy and Fuels, 34(6), 7257-7268. https://doi.org/10.1021/acs.energyfuels.0c00646
  30. U.S. Environmental Protection Agency. (2019). Integrated Science Assessment(ISA) for Particulate Matter (Final Report), EPA/600/R-19/188. https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=347534
  31. Viner, A. S., Lawless, P. A., Ensor, D. S., and Sparks, L. E. (1992). Ozone generation in DC-energized electrostatic precipitators, IEEE transactions on industry applications, 28(3), 504-512. https://doi.org/10.1109/28.137427
  32. Xu, C., Chang, J., Meng, Z., Wang, X., Zhang, J., Cui, L., and Ma, C. (2016). Wetting properties and performance test of modified rigid collector in wet electrostatic precipitators, Journal of the Air and Waste Management Association, 66(10), 1019-1030. https://doi.org/10.1080/10962247.2016.1173125