DOI QR코드

DOI QR Code

Study on Mechanical Properties and Biocompatibility of PVA/CNC Biomaterial Hydrogel

PVA/CNC 바이오소재 하이드로겔의 기계적 물성과 생체적합성 연구

  • Young Ho Seo (Department of Advenced Organic Materials Engineering, Graduate School, Yeungnam University) ;
  • Sun Mi Zo (School of Chemical Engineering, Yeungnam University) ;
  • Sung Soo Han (Department of Advenced Organic Materials Engineering, Graduate School, Yeungnam University) ;
  • Tae Hwan Oh (Department of Advenced Organic Materials Engineering, Graduate School, Yeungnam University)
  • 서영호 (영남대학교 대학원 유기신소재공학과) ;
  • 조선미 (영남대학교 화학공학부) ;
  • 한성수 (영남대학교 대학원 유기신소재공학과) ;
  • 오태환 (영남대학교 대학원 유기신소재공학과)
  • Received : 2023.10.01
  • Accepted : 2023.10.25
  • Published : 2023.10.31

Abstract

In this study, PVA (polyvinyl alcohol) and CNC (cellulose nano-crystal) composite hydrogel was manufactured and the effect of CNC content less than 1 wt% was investigated on the mechanical properties and cell viability. The CNC was utilized to enhance the compressive stress of the PVA hydrogel. We have focused on a low content of CNC less than 1 wt% because CNC is very expensive to use as an additive. The fabrication of PVA/CNC hydrogels with CNC contents of 0.25, 0.50, and 0.75 wt% was done using solvent casting and freeze-thawing physical cross-linking method. The compressive strength of the PVA/CNC hydrogel with a CNC content of 0.75 wt% was improved up to 95% higher than that of pristine PVA. Furthermore, through MTT and DAPI staining experiments, PVA/CNC hydrogels exhibited no toxicity and good cell viability due to the smooth proliferation of cells.

Keywords

Acknowledgement

본 연구는 첨단바이오신소재기술개발사업(과제번호 20008490)의 지원을 받아 수행된 과제로 이에 감사드립니다.

References

  1. S. M. Kim, K. M. Kim, K. S. Lee, C. K. You, and Y. K. Lee, "Enhanced Strength of the Tissue Engineering Scaffold", J. Korean Research Society for Dental Materials, 2011, 38, 321-326.
  2. J. R. W. Amanda, J. Hilldore, S. K. Lan, C. J. Park, A. W. Morgan, J. A. C. Eurell, S. G. Clark, M. B. Wheeler, R. D. Jamison, and A. J. W. Johnson, "The Mechanical Properties and Osteoconductivity of Hydroxyapatite Bone Scaffolds with Multi-scale Porosity", J. Biomaterials, 2007, 28, 45-54. https://doi.org/10.1016/j.biomaterials.2006.08.021
  3. B. A. Harley, J. H. Leung, E. C. C. M. Silva, and L. J. Gibson, "Mechanical Characterization of Collagen-glycosaminoglycan Scaffolds", J. Acta Biomaterialia, 2007, 3, 463-474. https://doi.org/10.1016/j.actbio.2006.12.009
  4. S. A. Paralikar, J. Simonsen, and J. Lombardi, "Poly(vinyl alcohol)/Cellulose Nanocrystal Barrier Membrane", J. Membr. Sci., 2008, 320, 248-258. https://doi.org/10.1016/j.memsci.2008.04.009
  5. K. C. S. Figueiredo, T. L. M. Alves, and C. P. Borges, "Poly(vinyl alcohol) Films Crosslinked by Glutaraldehyde Under Mild Conditions", J. Appl. Polym. Sci., 2009, 111, 3074-3080. https://doi.org/10.1002/app.29263
  6. E. Campos, P. Coimbra, and M. H. Gill, "An Improved Method for Preparing Glutaraldehyde Cross-linked Chitosan-poly(vinyl alcohol) Microparticles", J. Polym. Bull., 2013, 70, 549-561. https://doi.org/10.1007/s00289-012-0853-4
  7. H. Beydaghi, M. Javanbakht, and A. Badiei, "Cross-linked Poly(vinyl alcohol)/Sulfonated Nanoporous Silica Hybrid Membranes for Proton Exchange Membrane Fuel Cell", J. Nanostruct. Chem., 2014, 97, 2-9. https://doi.org/10.1007/s40097-014-0097-y
  8. H. S. Mansur, C. M. Sadahira, A. N. Souza, and A. A. P. Mansur, "FTIR Spectroscopy Characterization of Poly(vinyl alcohol) Hydrogel with Different Hydrolysis Degree and Chemically Crosslinked with Glutaraldehyde", J. Mater. Sci. Eng., C, 2008, 28, 539-548. https://doi.org/10.1016/j.msec.2007.10.088
  9. Y. Zhang, P. C. Zhu, and D. Edgren, "Crosslinking Reaction of Poly(vinyl alcohol) with Glyoxal", J. Polym. Res., 2010, 17, 725-730. https://doi.org/10.1007/s10965-009-9362-z
  10. M. Krumova, D. Lopez, R. Benavente, C. Mijangos, and J. M. Perena, "Effect of Crosslinking on the Mechanical and Thermal Properties of Poly(vinyl alcohol)", J. Polymer, 2000, 41, 9265-9272. https://doi.org/10.1016/S0032-3861(00)00287-1
  11. T. Miyazaki, Y. Takeda, S. Akane, T. Itou, A. Hoshiko, and K. En, "Role of Boric Acid for a Poly(vinyl alcohol) Film as a Crosslinking Agent: Melting Behaviors of the Films with Boric Acid", J. Polymer, 2010, 51, 5539-5549. https://doi.org/10.1016/j.polymer.2010.09.048
  12. M. Lim, H. Kwon, D. Kim, J. Seo, H. Han, and S. B. Khan, "Highly-enhanced Water Resistant and Oxygen Barrier Properties of Cross-linked Poly(vinyl alcohol) Hybrid Films for Packaging Application", J. Prog. Org. Coat., 2015, 85, 68-75. https://doi.org/10.1016/j.porgcoat.2015.03.005
  13. Y. Yin, J. Li, Y. Liu, and Z. Li, "Starch Crosslinked with Poly(vinyl alcohol) by Boric Acid", J. Appl. Polym. Sci., 2005, 96, 1394-1397. https://doi.org/10.1002/app.21569
  14. G. Kim, H. Kim, and H. J. Kang, "Crosslinking Characteristic of Poly(vinyl alcohol) by Natural Dye", J. Polymer(Korea), 2011, 35, 72-76. https://doi.org/10.7317/pk.2011.35.1.72
  15. S. Y. Jo, Y. M. Lim, M. H. Youn, H. J. Gwon, J. S. Park, Y. C. Nho, and H. S. Shin, "Fabrication and Characterization of PVA/CMC Hydrogels by Freezing-Thawing Technique and Gamma-Ray Irradiation", J. Polymer(Korea), 2009, 33, 551-554.
  16. J. S. Shin and H. J. Yoon, "Present and Future of Nanocellulose", News & Information for Chemical Engineers, 2016, 34, 500-512.
  17. O. M. Vanderfleet and E. D. Cranston, "Production Routes to Tailor the Performance of Cellulose Nanocrystals", J. Nature Reviews Materials, 2021, 6, 124-144. https://doi.org/10.1038/s41578-020-00239-y
  18. S. Xu, N. Girouard, G. Schueneman, M. L. Shofner, and J. C. Meredith, "Mechanical and Thermal Properties of Waterborne Epoxy Composites Containing Cellulose Nanocrystals", J. Polymers, 2013, 54, 6589-6598. https://doi.org/10.1016/j.polymer.2013.10.011
  19. S. Y. Ooi, I. Ahmad, and M. C. I. M. Amin, "Cellulose Nanocrystals Extracted from Rice Husks as a Reinforcing Material in Gelatin Hydrogels for Use in Controlled Drug Delivery Systems", J. Ind. Crops Prod., 2016, 93, 227-234. https://doi.org/10.1016/j.indcrop.2015.11.082
  20. J. Yang, X.-M. Zhang, and F. Xu, "Design of Cellulose Nanocrystals Template-assisted Composite Hydrogels Insights from Static to Dynamic Alignment", J. Macromolecules, 2015, 48, 1231-1239. https://doi.org/10.1021/ma5026175
  21. H. J. Cho, W. J. Yoo, J. S. Ahn, and S. J. Chun, "Preparation and Characterization of Cellulose Nanocrystals Reinforced Poly(vinyl alcohol) Based Hydrogels for Drug Delivery System", J. Korean Wood Sci. Technol., 2020, 48, 431-449. https://doi.org/10.5658/WOOD.2020.48.4.431
  22. G. Kandhola, A. Djioleu, K. Rajan, N. Labbe, J. Sakon, D. J. Carrier, and J. W. Kim, "Maximizing Production of Cellulose Nanocrystals and Nanofibers from Pre-extracted Loblolly Pine Kraft Pulp: A Response Surface Approach", J. Bioresources and Bioprocessing, 2020, 7, 19.
  23. T. Jayaramudu, H. U. Ko, H. C. Kim, J. W. Kim, R. M. Muthoka, and J. H. Kim, "Electroactive Hydrogels Made with Polyvinyl Alcohol/Cellulose Nanocrystals", J. Materials, 2018, 11, 1615-1625. https://doi.org/10.3390/ma11091615