DOI QR코드

DOI QR Code

PLA Mesh 직물 지지체의 기계적 물성 및 생체적합성 연구

Study on Mechanical Properties and Biocompatibility of Scaffold Made of Using PLA Mesh Fabric

  • 서영호 (영남대학교 대학원 유기신소재공학과) ;
  • 조선미 (영남대학교 화학공학부) ;
  • 한성수 (영남대학교 대학원 유기신소재공학과) ;
  • 오태환 (영남대학교 대학원 유기신소재공학과)
  • Young Ho Seo (Department of Advenced Organic Materials Engineering, Graduate School, Yeungnam University) ;
  • Sun Mi Zo (School of Chemical Engineering, Yeungnam University) ;
  • Sung Soo Han (Department of Advenced Organic Materials Engineering, Graduate School, Yeungnam University) ;
  • Tae Hwan Oh (Department of Advenced Organic Materials Engineering, Graduate School, Yeungnam University)
  • 투고 : 2023.10.02
  • 심사 : 2023.10.22
  • 발행 : 2023.10.31

초록

In this study, PLA scaffolds was manufactured by using PLA mesh fabric for tea-bags, and the effects of hot press temperature on mechanical properties, morphology, and cell viability were investigated. Research was focused on whether PLA mesh fabric for tea-bags can be used as a scaffold. PLA scaffolds were manufactured by laminating five layers of PLA mesh fabric that rotated at a 45 degree angle and the layers are hot pressed at 120, 130, 140, and 150 ℃. As the hot press temperature increased to 140 ℃, the tensile strength increased. SEM photographs showed that micro pores were formed well at 120 and 130 ℃. Non-toxicity and biocompatibility of the PLA mesh scaffold were revealed via MTT assay for cell viablity and DAPI staining experiments. We developed PLA scaffolds made of mesh fabric and showed the possibility thereof as scaffolds.

키워드

과제정보

본 연구는 산업통상자원부 첨단바이오신소재기술개발사업(과제번호 20008490)과 국제공동기술개발사업(과제번호 P0022396)의 지원을 받아 수행된 과제로 이에 감사드립니다.

참고문헌

  1. S.-M. Kim, K.-M. Kim, K.-S. Lee, C.-K. You, and Y.-K. Lee, "Enhanced Strength of the Tissue Engineering Scaffold", J. Korean Research Society for Dental Materials, 2011, 38, 321-326. 
  2. N. K. Lee, H. J. Oh, C. M. Hong, H. Suh, and S. H. Hong, "Comparison of the Synthetic Biodegradable Polymers, Polylactide (PLA), and Polylactic-co-glycolic Acid (PLGA) as Scaffolds for Artificial Cartilage", J. Biotechnology and Bioprocess Engineering, 2009, 14, 180-186.  https://doi.org/10.1007/s12257-008-0208-z
  3. M. P. Hellio Le Graverand, C. Reno, and D. A. Hart, "Influence of Pregnancy on Gene Expression in Rabbit Articular Cartilage", J. Osteoarthr. Cartil., 1998, 6, 341-350.  https://doi.org/10.1053/joca.1998.0133
  4. Y. Deng, K. Zhao, X. Zhang, P. Hu, and G. Q. Chen, "Study on the Three-dimensional Proliferation of Rabbit Articular Cartilage-derived Chondrocytes on Poly Hydroxyalkanoate Scaffolds", J. Biomaterials, 2002, 23, 4049-4056.  https://doi.org/10.1016/S0142-9612(02)00136-9
  5. B. H. Min, B. H. Choi, and S. R. Park, "Low in Tensity Ultrasound as a Supporter of Cartilage Regeneration and Its Engineering", J. Biotechnol. Bioprocess Eng., 2007, 12, 22-31.  https://doi.org/10.1007/BF02931799
  6. M. R. Jedwab and C. O. Clerc, "A Study of the Geometrical and Mechanical Properties of a Self Expanding Metallic Stent Theory and Experiment", J. Appl. Biometer., 1993, 4, 77. 
  7. B. G. Fallone, S. Wallace, and C. Gianturco, "Elastic Characteristics of the Self-expanding Metallic Stents", J. Invest Radio., 1988, 23, 370-376.  https://doi.org/10.1097/00004424-198805000-00008
  8. J. J. Grodzinski, "Polymers for Tissue Engineering, Medical Devices, and Regenerative Medicine. Concise General Review of Recentstudies", J. Polym. Adv. Technol., 2006, 17, 395-418.  https://doi.org/10.1002/pat.729
  9. G. M. Raghoebar, R. S. B. Liem, R. R. M. Bos, J. E. van der Wal, and A. Vissink, "Resorbable Screws for Fixation of Autologous Bone Grafts", Clinical Oral Implants Research, 2006, 17, 288-293.  https://doi.org/10.1111/j.1600-0501.2005.01200.x
  10. H. L. Acosta, E. J. Stelnicki, L. Rodriguez, and L. A. Slingbaum, "Use of Absorbable Poly(D,L) Lactic Acid Plates in Cranial-vault Remodeling: Presentation of the First Case and Lessons Learned About Its Use", The Cleft Palate-Craniofacial Journal, 2005, 42, 333-339.  https://doi.org/10.1597/03-071.1
  11. S. K. Sahoo, A. K. Panda, and V. Labhasetwar, "Characterization of Porous PLGA/PLA Microparticles as a Scaffold for Three Dimensional Growth of Breast Cancer Cells", J. Biomacromolecules, 2005, 6, 1132-1139.  https://doi.org/10.1021/bm0492632
  12. X. Liu, J. Gao, X. Cui, S. Nie, X. Wu, L. Zhang, P. Tang, J. Liu, and M. Li, "Functionalized 3D-Printed PLA Biomimetic Scaffold for Repairing Critical-Size Bone Defects", J. Bioengineering, 2023, 10, 1019. 
  13. Z. Shi, G. Huang, Z. Li, Z. Lou, Z. Gong, X. Wang, C. Li, and B. Wang, "A PLA-tPU Based Magnesium ion Incorporated CSH/nHA Bioactive Porous Composite Scaffold for Critical Bone Defect Repair", J. Mater. Adv., 2023, 4, 3583. 
  14. G. Lee, H. M. Lee, and Y. H. Kim, "Thermal and Mechanical Properties of Poly(L-lactic Acid) Films Plasticized with Propylene Carbonate", J. Polymer(Korea), 2019, 43, 113-122.  https://doi.org/10.7317/pk.2019.43.1.113
  15. D. Silva, D. Kaduri, M. Poley, M. Adir, O. Krinsky, N. Shainsky-Roitman, and A. Schroeder, "Biocompatibility, Biodegradation and Excretion of Polylactic Acid (PLA) in Medical Implants and Theranostic Systems", J. Chem. Eng., 2018, 340, 9-14.  https://doi.org/10.1016/j.cej.2018.01.010
  16. M. Cha, Y. Z. Jin, J. W. Park, K. M. Lee, S. H. Han, B. S. Choi, and J. H. Lee, "Three-dimensional Printed Polylactic Acid Scaffold Integrated with BMP-2 Laden Hydrogel for Precise Bone Regeneration", J. Biomater. Res., 2021, 25, 35. 
  17. B. Tyler, D. Gullotti, A. Mangraviti, T. Utsuki, and H. Brem, "Polylactic Acid (PLA) Controlled Delivery Carriers for Biomedical Applications", J. Adv. Drug Deliv. Rev., 2016, 107, 163-175.  https://doi.org/10.1016/j.addr.2016.06.018
  18. M. Nasr, G. A. Awad, S. Mansour, A. Al Shamy, and N. D. Mortada, "Hydrophilic Versus Hydrophobic Porogens for Engineering of Poly(lactide-co-glycolide) Microparticles Containing Risedronate Sodium", J. Pharm. Dev. Technol., 2013, 18, 1078-1088.  https://doi.org/10.3109/10837450.2012.693507
  19. Y. Ramot, M. Haim-Zada, A. J. Domb, and A. Nyska, "Biocompatibility and Safety of PLA and Its Copolymers", J. Adv. Drug Deliv. Rev., 2016, 107, 153-162. https://doi.org/10.1016/j.addr.2016.03.012