DOI QR코드

DOI QR Code

Inactivation influences on Escherichia coli DS5α by irradiation with 405 nm violet-light

  • Young-Sun Kim (Department of Horticultural Science, Daegu University) ;
  • Mun-Jin Choi (Department of Horticultural Science, Daegu University) ;
  • Dae-Young Lee (Kingstar Lighting LTD Co.) ;
  • Sang-Ook Kang (Department of Advanced Material Chemistry, Korea University Sejong Campus) ;
  • Geung-Joo Lee (Department of Horticultural Science and Department of Smart Agriculture System, Chungnam National University)
  • 투고 : 2023.05.30
  • 심사 : 2023.07.18
  • 발행 : 2023.09.01

초록

Because an irradiation of 405 nm violet light could have a strong energy, it was used to be sterilized against various microbes in the indoor air condition or fresh food. Escherichia coli is a representative bio-pollutant in the indoor air-borne bacteria, and a hygienic microbe in the horticultural food. This study evaluated the inactivation influences on E. coli DS5α after exposure to 405 nm violet-light (VL) by investigating irradiating time, and the vertical and horizonal distance from light source. The illumination of 405 nm VL was inversely proportional to the distance from the VL source. E. coli DS5α on nutrient agar (NA) was inactivated approximately 50% more than the control when irradiated at 65 cm from 405 nm VL for 3 hours. When compared to the control, E. coli DS5α was inactivated approximately 50% within 70 cm from 405 nm VL for 3 hours. As it was irradiated for 3 hours 70 cm away from 405 nm VL, the horizonal distance from the point was negatively correlated to the inactivation of E. coli DS5α. These results indicated that the inactivation of E. coli DS5α grown on NA medium needs to be irradiated with 405 nm within 70 cm from the light source for 3 hours.

키워드

과제정보

This work was supported by the Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety) (Project Number: HW20C2186, KMDF_PR_20200901_0000).

참고문헌

  1. Adams MR, Hartley AD, Cox LJ. 1989. Factors affecting the efficacy of washing procedures used in the production of prepared salads. Food Microbiology 6:69-77. https://doi.org/10.1016/S0740-0020(89)80039-5
  2. Aysan Y, Mirik M, Ala A, Sahin F, Cinar O. 2003. First report of Pseudomonas viridiflava on melon in Turkey. Plant Pathology 52:800. DOI:10.1111/j.1365-3059.2003.00909.
  3. Bourget CM. 2008. An introduction to light-emitting diodes. American Society for Horticultural Science 43:1944-1946. DOI:10.21273/HORTSCI.43.7.1944.
  4. Bumah VV, Aboualizadeh E, Masson-Meyers DS, Eells JT, Enwemeka CS, Hirshmugl CJ. 2017. Spectrally resolved infrared microscopy and chemometric tools to reveal the interaction between violet-light (470 nm) and methicillin-resistantStaphylococcus aureus. Journal of photochemistry and photobiology B: Biology 167:150-157. DOI:10.1016/j.jphotobiol.2016.12.030.
  5. Choi GS, Cho JD, Chung BN, Cho IS, Choi SK. 2011. Cause of the scion death in green pepper grafting system by Tobamovirus. Research in Plant Disease 17:191-195. DOI:10.5423/RPD.2011.17.2.191. [in Korean]
  6. Choi JW, Park SY, Yeon JH, Lee MJ, Chung DH, Lee KH, Kim MG, Lee DH, Kim GS, Ha SD. 2005. Microbial contamination levels of fresh vegetable distributed in markets. Journal of Food Hygiene and Safety 20:43-47. [in Korean]
  7. Ferrer-Espada R, Wang Y, Goh XS, Dai T. 2020. Antimicrobial blue light inactivation of microbial isolates in biofilms. Lasers in Surgery and Medicine 52:472-478. DOI:10.1002/lsm.23159.
  8. Hong CK, Seo YH, Choi CM, Hwang IS, Kim MS. 2012. Microbial quality of fresh vegetables and fruits in Seoul, Korea. Journal of Food Hygiene and Safety 27:24-29. DOI:10.13103/JFHS.2012.27.1.024. [in Korean]
  9. Im H, Moon JK, Kim WS. 2016. Antibacterial activity of supernatant obtained for Weissella koreensis and Lactobacillus sakei on the growth of pathogenic bacteria. Korean Journal of Agricultural Science 43:415-423. DOI:0.7744/kjoas.20160044. [in Korean] https://doi.org/10.7744/kjoas.20160044
  10. Jang M, Mun B, Choi CS, Um Y, Lee SG. 2014. Graft-take and growth of grafted pepper transplants influenced by the nutrient and irrigation management of scion and rootstock before grafting. Protected Horticulture and Plant Factory 23:364-370. DOI:10.12791/KSBEC.2014.23.4.364. [in Korean]
  11. Jun SY, Kim TH, Hwang SH. 2012. The consumption status and preference for sprouts and leafy vegetables. Korean Journal of Food Preservation 19:783-791. DOI:10.11002/kjfp.2012.19.5.783. [in Korean]
  12. Kim CH, Lee ES, Kang SM, de Jong EJ, Kim BI. 2017. Bactericidal effect of the photocatalystic reaction of titanium dioxide using visible wavelengths on Streptococcus mutans biofilm. Photodiagnosis and Photodynamic Therapy 18:279-283. DOI:10.1016/j.pdpdt.2017.03.015.
  13. Kim HG, Choi YH, Kim YH. 2019. Graft-taking and growth characteristics of grafted cucumber (Cucumis sativus L.) seedlings as affected by light quality and blink cycle of LED modules. Protected Horticulture and Plant Factory 28:143-149. DOI:10.12791/KSBEC.2019.28.2.143. [in Korean]
  14. Kim YS, Lee GJ. 2022. Changes of Bacillus subtilis SA-15 in diluted solution mixing with microbial fertilizer and pesticides. Weed and Turfgrass Science 11:65-74. DOI:10.5660/WTS.2022.11.1.065. [in Korean]
  15. Kurilcik A, Miklusyte-Canova R, Dapkuniene S, Zilinskaite S, Kurilcik G, Tamulaitis G, Duchovskis P, Zukauskas A. 2008. In vitro culture of Chrysanthemum plantlets using light-emitting diodes. Central European Journal of Biology 3:161-167. DOI:10.2478/s11535-008-0006-9.
  16. Lee D, So JD, Jung HM, Park SH, Lee SH. 2018. Microwave drying characteristics of squash slices. Korean Journal of Agricultural Science 45:347-857. DOI:10.7744/kjoas.20180091. [in Korean]
  17. Maclean M, Anderson JG, MacGregor SJ, White T, Atreya CD. 2016. A new proof of concept in bacterial reduction: Antimicrobial action of violet-blue light (405 nm) in Ex Vivo stored plasma. Journal of Blood Transfusion 2016:2920514. DOI:10.1155/2016/2920514.
  18. Maclean M, MacGregor SJ, Anderson JG, Woolsey G. 2009. Inactivation of bacterial pathogens following exposure to light from a 405-nonometer light-emitting diode array. Applied and Environmental Microbiology 75:1932-1937. DOI:10.1128/AEM.01892-08.
  19. Maclean M, McKenzie K, Anderson JG, Gettinby G, MacGregor SJ. 2014. 405 nm light technology for the inactivation of pathogens and its potential role for environmental disinfection and infection control. Journal of Hospital Infection 88:1-11. DOI:10.1016/j.jhin.2014.06.004.
  20. Mok CK, Lee NH. 2008. Distribution ultraviolet intensity and UV leaking of commercial UV sterilizers used in restaurants. Korean Journal of Food Science Technology 40:228-233. [in Korean]
  21. Molobela IP, Ilunga FM. 2012. Impact of bacterial biofilms: The importance of quantitative biofilm studies. Annals of Microbiology 62:461-467.
  22. Park H, Cha GH, Shin JK. 2016. Sterilization of rapeseed sprouts by intense pulsed light treatment. Korean Journal of Food Science and Technology 48:36-41. DOI:10.9721/KJFST.2016.48.1.36. [in Korean]
  23. Park HO, Kim CM, Woo GJ, Park SH, Lee DH, Chang EJ, Park KH. 2001. Monitoring and trend analysis of food poisoning outbreaks occurred in recent years in Korea. Journal of Food Hygiene and Safety 16:280-294. [in Korean]
  24. Park JY, Na SY, Lee YJ. 2010. Present and future of non-thermal food processing technology. Food Science Industry 43:2-20. DOI:10.23093/FSI.2010.43.1.2. [in Korean]
  25. Rathnasinghe R, Jangra S, Miorin L, Schotsaert M, Yahnke C, Garcίa-Sastre A. 2021. The virucidal effects of 405 nm visible light on SARS-CoV-2 and influenza A virus. Scientific Report 11:19470. DOI:10.1038/s41598-021-97797-0.
  26. Rutala WA, Kanamori H, Gergen MF, Sexton DJ, Anderson DJ, Laux J, Weber DJ, CDC Prevention Epicenters Program. 2018. Antimicrobial activity of a continuous visible light disinfection system. Infection Control and Hospital Epidemiology 39:1250-1253. DOI:10.1017/ice.2018.200.
  27. Yoo KR, Lee SY. 2017. Effects of light-emitting diodes on in vitro growth of virus-free sweet potato plantlets. Horticultural Science and Technology 35:490-498. DOI:10.12972/kjhst.20170052. [in Korean]