DOI QR코드

DOI QR Code

Experimental and numerical study of large high strength bolt shear connector embedded in HFRC

  • Yuliang He (College of Civil Engineering, Shaoxing University) ;
  • Zhengxin Wang (College of Civil Engineering, Shaoxing University) ;
  • Weiming Wu (Huahui Group) ;
  • Ying Yang (College of Civil Engineering, Shaoxing University) ;
  • Yiqiang Xiang (College of Civil Engineering and Architecture, Zhejiang University)
  • Received : 2022.11.10
  • Accepted : 2023.09.26
  • Published : 2023.10.25

Abstract

To investigate the static properties of large high strength bolt shear connector in hybrid fiber-reinforced concrete (HFRC) and normal concrete (NC), eight push-out test specimens with single/double nut and HFRC/NC slabs were designed and push-out tests were conducted. A fine 3D nonlinear finite element (FE) model including HFRC constitutive model was established by using ANSYS 18.0, and the test results were used to verify FE models of the push-out test specimens. Then a total of 13 FE models were analyzed with various parameters including fiber volume fractions of HFRC, bolt diameter and thickness of steel flange. Finally, the empirical equations considering the contribution of polypropylene fiber (PF) and steel fiber (SF) obtained from the regression of the test results and FE analysis were recommended to evaluate the load-slip curve and ultimate capacity of the large high strength bolt shear connector embedded in HFRC/NC.

Keywords

Acknowledgement

This work was financially supported by Shaoxing industrial key technology project (2022026001), 2022 Science and Technology Project of Zhejiang Province Construction Department (2022K127).

References

  1. American Association of State Highway and Transportation Officials (AASHTO) (2010), Bridge Design Specifications. American Association of State Highway and Transportation Officials, Washington, American.
  2. American Concrete Institute (ACI) (2011), Report on Fiber Reinforced Concrete, ACI 544.1R-96. American Concrete Institute, Washington, American.
  3. American Institute of Steel Construction (AISC) (2011), Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, American.
  4. ANSYS Software documentation (2017), Release 18.0. ANSYS, Inc., Canonsburg, PA, American.
  5. Chi, Y., Yu, M., Huang, L. and Xu, L. (2017), "Finite element modeling of steel-polypropylene hybrid fiber reinforced concrete using modified concrete damaged plasticity", Eng. Struct, 148, 23-35. http://dx.doi.org/10.1016/j.engstruct.2017.06.039.
  6. EN 1994-1-1 (2004), Eurocode 4: Design of Composite Steel and Concrete Structures -Part 1-1: General Rules and Rules, European Standard, European.
  7. GB 50010 (2019), Code for Design of Concrete Structures, Ministry of House and Urban-Rural Development of People's Republic of China, BeiJing, China.
  8. Guezouli, S. and Lachal, A. (2012), "Numerical analysis of frictional contact effects in push-out tests", Eng. Struct, 40, 39-50. http://dx.doi.org/10.1016/j.engstruct.2012.02.025.
  9. He, Y., Zhuang, J., Hu, L., Li, F., Yang, Y. and Xiang, Y.Q. (2022), "Static and fatigue behavior of through-bolt shear connectors with prefabricated HFRC slabs", Struct. Eng. Mech., 83(1), 109-121. https://doi.org/10.12989/sem.2022.83.1.109.
  10. He, Y.L., Wu, X.D., Xiang, Y., Wang, Y.H., Liu, L.S. and He, Z.H. (2017), "Mechanical behavior of stud shear connectors embedded in HFRC", Steel Compos. Struct., 24(2), 177-189. https://doi.org/10.12989/scs.2017.24.2.177.
  11. He, Y.L., Zhang, C., Wang, L.C., Yang, Y. and Xiang, Y.Q. (2021), "Numerical analysis of large stud shear connector embedded in HFRC", Struct. Eng. Mech., 80(5), 595-608. https://doi.org/10.12989/sem. 2021.80.5.595.
  12. Hu, Y., Yin, H., Ding, X., Li, S. and Wang, J.Q . (2020), "Shear behavior of large stud shear connectors embedded in ultra-high-performance concrete", Adv. Civil Eng., 1-14. https://doi.org/10.1177/1369433220939208.
  13. Kim, J.S., Kwark, J., Joh, C., Yoo, S.W. and Lee, K.C. (2015), "Headed stud shear connector for thin ultrahigh performance concrete bridge deck", Eng. Struct, 108, 23-30. http://dx.doi.org/10.1016/j.jcsr.2015.02.001.
  14. Liu, X., Bradford, M.A. and Chen, Q.J. (2016), "Finite element modelling of steel-concrete composite beams with high-strength friction-grip bolt shear connectors", Finite Element. Anal. Des., 108(C), 54-65. https://doi.org/10.1016/j.finel.2015.09.004.
  15. Liu, X., Bradford, M.A. and Lee, M.S.S. (2014), "Behavior of high-strength friction-grip bolted shear connectors in sustainable composite beams", J. Struct. Eng., 141(6), http://.doi.org/(04014149)1-12.10.1061/(ASCE)ST.1943-541X.0001090.
  16. Nguyen, G.B. and Machacek, J. (2016), "Effect of local small diameter stud connectors on behavior of partially encased composite beams", Steel Compos. Struct., 20(2), 251-266. https://doi.org/10.12989/ scs.2016.20.2.251.
  17. Nguyen, H., Mutsuyoshi, H. and Zatar, W. (2014), "Push-out tests for shear connections between UHPFRC slabs and FRP girder", Compos Struct., 118, 528-547. http://dx.doi.org/10.1016/j.compstruct.2014.08.003.
  18. Pathirana, S.W., Uy, B., Mirza, O. and Zhu, X. (2016b), "Flexural behaviour of composite steel-concrete beams utilising blind bolt shear connectors", Eng. Struct., 114, 181-194. https://doi.org/10.1016/j. engstruct.2016.01.057.
  19. Shim, C.S. and Kim, D.W. (2016), "Design codes on stud shear connectors for new details", Compos. Construct. Steel Concrete VII, North Queensland, February.
  20. Sriboonma, K. and Badie, S.S. (2012), "Practical steel confinements for wildly spaced clustered large stud shear connectors in composite bridge deck panel systems", Structures Congress 2010, Florida, May.
  21. Tong, L., Chen, L., Wen, M. and Xu, C. (2019), "Static behavior of stud shear connectors in high-strength-steel-UHPC composite beams", Eng. Struct., 218, 110827. https://doi.org/10.1016/j.engstruct.2020.110827.
  22. Wang, J., Qi, J., Tong, T., Xu, Q. and Xiu, H. (2019), "Static behavior of large group stud shear connectors in steel-UHPC composite structures", Eng. Struct, 178, 534-542. https://doi.org/10.1016/j.engstruct.2018.07.058.
  23. Wang, J., Xu, Q., Yao, Y., Qi, J. and Xiu, H. (2018), "Static behavior of grouped large headed stud-UHPC shear connectors in composite structures", Compos. Struct, 206, 202-214. https://doi.org/10.1016/j.compstruct.2018.08.038.
  24. Willam, K.J. and Warnke, E.P. (1974), "Constitutive model for the triaxial behavior of concrete, seminar on concrete structures subjected to triaxial stresses", In: International Association of Bridge and Structural Engineering Conference, Bergamo, Italy.
  25. Xu, X., Liu, Y. and He, J. (2014), "Study on mechanical behavior of rubber-sleeved studs for steel and concrete composite structures", Constr. Build Mater., 53(2014) 533-546. http://dx.doi.org/10.1016/j.conbuildmat.2013.12.011.
  26. Yang, F., Liu, Y., Jiang, Z. and Xin, H. (2018), "Shear performance of a novel demountable steel-concrete bolted connector under static push-out tests", Eng. Struct, 160, 133-146. https://doi.org/10.1016/j.engstruct.2018.01.005.
  27. Yu-liang, H., Shi-jie, G., Li-chao, W., Ying, Y. and Yi-qiang, X. (2020), "Experimental and numerical analysis of grouped stud shear connectors embedded in HFRC", Construct. Build. Mater., 242, 118197. https://doi.org/10.1016/j.conbuildmat.2020.118197.
  28. Yu Liang, H., Yi Qiang, X., Li Si, L. and Ying, Y. (2018), "Mechanical behavior of steel-HFRC composite girders", J. Bridge Eng., ASCE, 23(10), 04018070~1-17. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001275.
  29. Zhang, Y., Chen, B., Liu, A., Pi, Y. L., Zhang, J., Wang, Y. and Zhong, L. (2019), "Experimental study on shear behavior of high strength bolt connection in prefabricated steel-concrete composite beam", Compos. Part B, 159, 481-489. https://doi.org/10.1016/j.compositesb.2018.10.007.