DOI QR코드

DOI QR Code

A GMDH-based estimation model for axial load capacity of GFRP-RC circular columns

  • Mohammed Berradia (Department of Civil Engineering, Laboratory of Structures, Geotechnics and Risks (LSGR), Hassiba Benbouali University of Chlef) ;
  • El Hadj Meziane (Department of Civil Engineering, Geomaterials Laboratory (LaG), Hassiba Benbouali University of Chlef) ;
  • Ali Raza (Department of Civil Engineering, University of Engineering and Technology Taxila) ;
  • Mohamed Hechmi El Ouni (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Faisal Shabbir (Department of Civil Engineering, University of Engineering and Technology Taxila)
  • Received : 2021.12.07
  • Accepted : 2023.10.16
  • Published : 2023.10.25

Abstract

In the previous research, the axial compressive capacity models for the glass fiber-reinforced polymer (GFRP)-reinforced circular concrete compression elements restrained with GFRP helix were put forward based on small and noisy datasets by considering a limited number of parameters portraying less accuracy. Consequently, it is important to recommend an accurate model based on a refined and large testing dataset that considers various parameters of such components. The core objective and novelty of the current research is to suggest a deep learning model for the axial compressive capacity of GFRP-reinforced circular concrete columns restrained with a GFRP helix utilizing various parameters of a large experimental dataset to give the maximum precision of the estimates. To achieve this aim, a test dataset of 61 GFRP-reinforced circular concrete columns restrained with a GFRP helix has been created from prior studies. An assessment of 15 diverse theoretical models is carried out utilizing different statistical coefficients over the created dataset. A novel model utilizing the group method of data handling (GMDH) has been put forward. The recommended model depicted good effectiveness over the created dataset by assuming the axial involvement of GFRP main bars and the confining effectiveness of transverse GFRP helix and depicted the maximum precision with MAE = 195.67, RMSE = 255.41, and R2 = 0.94 as associated with the previously recommended equations. The GMDH model also depicted good effectiveness for the normal distribution of estimates with only a 2.5% discrepancy from unity. The recommended model can accurately calculate the axial compressive capacity of FRP-reinforced concrete compression elements that can be considered for further analysis and design of such components in the field of structural engineering.

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through a large group Research Project under grant number RGP 2/6/44.

References

  1. Abbaszadeh, M.A. and Sharbatdar M. (2020), "Modeling of restrained circular concrete columns wrapped by fiber reinforced polymer utilizing artificial neural network", J. Soft Comput. Civil Eng., 4(4), 61-78. https://doi.org/10.22115/SCCE.2020.213196.1153.
  2. ACI (2015), American Concrete Institute, Guide for the Design and Construction of Concrete Reinforced with FRP Bars. ACI 440.1R-15, Farmington Hills, MI, USA.
  3. Afifi, M.Z., Mohamed H.M. and Benmokrane B. (2014), "Axial capacity of circular concrete columns reinforced with GFRP bars and helix", J. Compos. Construct., 18(1), 04013017. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000438.
  4. Afifi, M.Z., Mohamed H.M. and Benmokrane B. (2014), "Strength and axial behavior of circular concrete columns reinforced with CFRP bars and helix", J. Compos. Construct., 18(2), 04013035. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000430.
  5. Ahangarnazha, B.H., Pourbaba, M. and Afkar, A. (2020), "Bond behavior between steel and Glass Fiber Reinforced Polymer (GFRP) bars and ultra high performance concrete reinforced by Multi-Walled Carbon Nanotube (MWCNT)", Steel Compos. Struct., 35(4), 463-474. https://doi.org/10.12989/scs.2020.35.4.463.
  6. Alajarmeh, O.S., Manalo, A.C., Benmokrane, B., Karunasena, W. and Mendis, P. (2021a), "Axial effectiveness of GFRP composite bars and helix in circular hollow concrete columns", Structures, 29, https://doi.org/10.1016/j.istruc.2020.11.043.
  7. Ali, L., Ouni, M.H.E., Raza, A. and Kahla, N.B. (2021). "Investigation of FRP-reinforced recycled concrete compressive components: Experimental and theoretical analysis", Steel Compos. Struct., 41(1), 99-113. https://doi.org/10.12989/scs.2021.41.1.099.
  8. Aslam, H.M.U., Sami, A. and Raza, A. (2021), "Axial compressive behavior of damaged steel and GFRP bars reinforced concrete columns retrofitted with CFRP laminates", Compos. Struct., 258, 113206. https://doi.org/10.1016/j.compstruct.2020.113206.
  9. Behfarnia, K. and Khademi, F. (2017), "A comprehensive study on the concrete compressive strength estimation utilizing artificial neural network and adaptive neuro-fuzzy inference system", Iran Univ. Sci. Technol., 7(1), 71-80. http://ijoce.iust.ac.ir/article-1-284-en.html.
  10. Canadian Standard Association, CSA (2012), Design and construction of building structures with fibre-reinforced polymer, CAN/CSA S806-12. Toronto, ON, Canada.
  11. Chen, B.L. and Wang L.G. (2019), "Experimental study on hollow steel-reinforced concrete-filled GFRP tubular components under axial compression", Steel Compos. Struct., 32(1), 59-66. https://doi.org/10.12989/scs.2019.32.1.059.
  12. CNR-DT 200 R1 (2013), "Guide for the design and construction of externally bonded FRP systems for strengthening existing structures", Advisory Committee on Technical Recommendation for Construction, National Research Council, Rome, Italy.
  13. Dong, Z., Sun, Y., Wu, G., Zhu, H., Zhao, X.L., Wei, Y. and Zhang, P. (2021), "Flexural behavior of seawater sea-sand concrete beams reinforced with BFRP bars/grids and BFRP-wrapped steel tubes", Compos. Struct., 268, 113956. https://doi.org/10.1016/j.compstruct.2021.113956.
  14. Elwan, S.K. and Omar, M.A. (2014), "Experimental behavior of eccentrically loaded RC slender columns strengthened utilizing GFRP wrapping", Steel Composite Struct., 17(3), 271-285. https://doi.org/10.12989/scs.2014.17.3.271.
  15. Hadhood, A., Mohamed H.M. and Benmokrane B. (2016), "Axial load-moment interaction diagram of circular concrete columns reinforced with CFRP bars and helix, experimental and theoretical investigations", J. Compos. Construct., 21(2), 04016092. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000748.
  16. Hadhood, A., Mohamed H.M. and Benmokrane B. (2017), "Experimental study of circular high-strength concrete columns reinforced with GFRP bars and helix under concentric and eccentric loading", J. Compos. Construct., 21(2), 04016078. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000734.
  17. Hadhood, A., Mohamed, H.M., Ghrib F. and Benmokrane B. (2017), "Effectiveness of glass-fiber reinforced-polymer (GFRP) discrete hoops and bars in concrete columns under combined axial and flexural loads", Compos. Part B, Eng., 114, 223-236. https://doi.org/10.1016/j.compositesb.2017.01.063.
  18. Hadi, M.N. and Youssef, J. (2016), "Experimental investigation of GFRP-reinforced and GFRP-encased square concrete specimens under axial and eccentric load, and four-point bending test", J. Compos. Construct., 20(5), 04016020. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000675.
  19. Hadi, M.N., Hasan, H.A. and Sheikh, M.N. (2017), "Experimental investigation of circular high-strength concrete columns reinforced with glass fiber-reinforced polymer bars and helices under different loading conditions", J. Compos. Construct., 21(4), 04017005. https://doi.org/10.1061/(asce)cc.1943-5614.0000784.
  20. Hadi, M.N., Karim, H. and Sheikh, M.N. (2016), "Experimental investigations on circular concrete columns reinforced with GFRP bars and helices under different loading conditions", J. Compos. Construct., 20(4), 04016009. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000670.
  21. Hales, T.A., Pantelides, C.P., Sankholkar, P. and Reaveley, L.D. (2017), "Analysis-oriented stress-strain model for concrete confined with fiber-reinforced polymer helix", ACI Struct. J., 114(5), 1263-1272. https://doi.org/10.14359/51689788.
  22. Hasan, H.A., Sheikh, M.N. and Hadi, M.N. (2017), "Effectiveness evaluation of high strength concrete and steel fibre high strength concrete columns reinforced with GFRP bars and helices", Construct. Build. Mater., 134, 297-310. https://doi.org/10.1016/j.conbuildmat.2016.12.124.
  23. Kamgar, R., Naderpour, H., Komeleh, H.E., Jakubczyk-Galczynska, A. and Jankowski, R. (2020), "A proposed soft computing model for ultimate strength estimation of FRP-confined concrete cylinders", Appl. Sci., 10(5), 1769. https://doi.org/10.3390/app10051769.
  24. Karim, H., Sheikh, M.N. and Hadi, M.N. (2016), "Axial load-axial deformation behaviour of circular concrete columns reinforced with GFRP bars and helices", Construct. Build. Mater., 112, 1147-1157. https://doi.org/10.1016/j.conbuildmat.2016.02.219.
  25. Khan, Q.S., Sheikh, M.N. and Hadi, M.N. (2019), "Predicting strength and strain enhancement ratios of circular fiber-reinforced polymer tube confined concrete under axial compression using artificial neural networks", Adv. Struct. Eng., 22(6), 1426-1443. https://doi.org/10.1177/1369433218815229.
  26. Lin, H.-J. and Liao C.-I. (2004), "Compressive strength of reinforced concrete column confined by composite material", Compos. Struct., 65(2), 239-250. https://doi.org/10.1016/j.compstruct.2003.11.001.
  27. Lu, Y.Y., Li, N., Li, S. and Ou, T.Y. (2015), "Slender RC columns strengthened with combined CFRP and steel jacket under axial load", Steel Compos. Struct., 19(5), 1077-1094. https://doi.org/10.12989/scs.2015.19.5.1077.
  28. Mander, J.B., Priestley, M.J. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
  29. Maranan, G.B., Manalo, A.C., Benmokrane, B., Karunasena, W. and Mendis, P. (2016), "Behavior of concentrically loaded geopolymer-concrete circular columns reinforced mainly and crosswise with GFRP bars", Eng. Struc., 117, 422-436. https://doi.org/10.1016/j.engstruct.2016.03.036.
  30. Moayedi, H., Eghtesad, A., Khajehzadeh, M., Keawsawasvong, S., Al-Amidi, M.M. and Le Van, B. (2022), "Optimized ANNs for predicting compressive strength of high-effectiveness concrete", Steel Compos. Struct., 44(6), 853-868. https://doi.org/10.12989/scs.2022.44.6.867.
  31. Mohamed, H.M., Afifi, M.Z. and Benmokrane, B. (2014), "Performance evaluation of concrete columns reinforced longitudinally with FRP bars and confined with FRP hoops and helix under axial load", J. Bridge Eng., 19(7), 04014020. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000590.
  32. Naderpour, H., Kheyroddin, A. and Amiri, G.G. (2010), "Preeiction of FRP-confined compressive strength of concrete utilizing artificial neural networks", Compos. Struct., 92(12), 2817-2829. https://doi.org/10.1016/j.compstruct.2010.04.008.
  33. Obaidat, Y.T., Ashteyat, A.M. and Alfaris, S.F. (2020), "A new technique for repairing reinforced concrete columns", J. Build. Eng., 30, 101256. https://doi.org/10.1016/j.jobe.2020.101256.
  34. Pantelides, C.P., Gibbons, M.E. and Reaveley, L.D. (2013), "Axial load behavior of concrete columns confined with GFRP helix", J. Compos. Construct., 17(3), 305-313. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000357.
  35. Pellegrino, C. and Modena, C. (2010), "Analytical model for FRP confinement of concrete columns with and without internal steel reinforcement", J. Compos. Construct., 14(6), 693-705. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000127.
  36. Rafique, U., Ali, A. and Raza, A. (2021), "Structural behavior of GFRP reinforced recycled aggregate concrete columns with polyvinyl alcohol and polypropylene fibers", Adv. Struct. Eng., 13694332211017997. https://doi.org/10.1177/13694332211017997.
  37. Raza, A. and Khan, Q.U.Z. (2020), "Experimental and theoretical study of GFRP hoops and helix in hybrid fiber reinforced concrete short columns", Mater. Struct., 53(6), 1-14. https://doi.org/10.1617/s11527-020-01575-9.
  38. Raza, A. and Khan, Q.U.Z. (2021), "Structural behavior of GFRP-reinforced circular HFRC columns under concentric and eccentric loading", Arab. J. Sci. Eng., 46(5), 4239-4252. https://doi.org/10.1007/s13369-020-04881-0.
  39. Raza, A. and Rafique, U. (2020), "Effectiveness of GFRP bars and hoops in recycled aggregate concrete columns, Experimental and numerical study", Compos. Struct., 255, 112986. https://doi.org/10.1016/j.compstruct.2020.112986.
  40. Raza, A., El Ouni, M.H. and Berradiam M. (2021b), "Structural assessment of eccentrically loaded GFRP reinforced circular concrete columns, experiments and finite element analysis", Compos. Struct., 114528. https://doi.org/10.1016/j.compstruct.2021.114528.
  41. Raza, A., El Ouni, M.H., Ali, L., Awais, M., Ali, B., Ahmad, Z. and Kahla, N.B. (2022), "Structural evaluation of recycled aggregate concrete circular columns having FRP rebars and synthetic fibers", Eng. Struct., 250, 113392. https://doi.org/10.1016/j.engstruct.2021.113392.
  42. Raza, A., Khan, Q. and Ahmad, A. (2021c), "Investigation of HFRC columns reinforced with GFRP bars and helix under concentric and eccentric loadings", Eng. Struct., 227, 111461. https://doi.org/10.1016/j.engstruct.2020.111461.
  43. Raza, A., Manalo, A.C., Rafique, U. and AlAjarmeh, O.S. (2021d), "Concentrically loaded recycled aggregate geopolymer concrete columns reinforced with GFRP bars and helix", Compos. Struct., 268, 113968. https://doi.org/10.1016/j.compstruct.2021.113968.
  44. Raza, A., Shah, S.A.R., Alhazmi, H., Abrar, M. and Razzaq, S. (2021e), "Strength profile pattern of FRP-reinforced concrete structures, A effectiveness analysis through finite element analysis and theoretical modeling technique", Polymers, 13(8), 265. https://doi.org/10.3390/polym13081265.
  45. Raza, A., Shah, S.A.R., Khan, A.R., Aslam, M.A., Khan, T.A., Arshad, K. and Waseem, M. (2020a), "Sustainable FRP-confined symmetric concrete structures, an application experimental and numerical validation process for reference data", Appl. Sci., 10(1), 333. https://doi.org/10.3390/app10010333.
  46. Raza, A., Shah, S.A.R., ul Haq, F., Arshad, H., Raza, S.S., Farhan, M. and Waseem, M. (2020b), "Prediction of axial compressive capacity of GFRP-reinforced concrete columns through artificial neural networks", Structures, 28, 1557-1571. https://doi.org/10.1016/j.istruc.2020.10.010.
  47. Raza, A., ur Rehman, A., Masood, B. and Hussain, I. (2020c), "Finite element modelling and theoretical estimates of FRP-reinforced concrete columns confined with various FRP-tubes", Structures, 26, 626-638. https://doi.org/10.1016/j.istruc.2020.04.033.
  48. Sankholkar, P.P. (2016), Confinement Model for Concrete Columns Internally Reinforced With Glass Fiber Reinforced Polymer Helix, The University of Utah.
  49. Sankholkar, P.P., Pantelides, C.P. and Hales, T.A. (2018), "Confinement model for concrete columns reinforced with GFRP helix", J. Compos. Construct., 22(3), 04018007. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000843.
  50. Sheikh, S.A. and Uzumeri, S.M. (1980), "Strength and ductility of tied concrete columns", J. Struct. Div., 106(5), 1079-1102. https://doi.org/10.1061/JSDEAG.0005416.
  51. Tobbi, H., Farghaly, A.S. and Benmokrane, B. (2014), "Behavior of concentrically loaded fiber-reinforced polymer reinforced concrete columns with varying reinforcement types and ratios", ACI Struct. J., 111(2), 375-386. https://doi.org/10.14359/51686528.
  52. Wang, J., Liu, W., Zhou, D., Zhu, L. and Fang, H. (2014), "Mechanical behaviour of concrete filled double skin steel tubular stub columns confined by FRP under axial compression", Steel Compos. Struct., 17(4), 431-452. https://doi.org/10.12989/scs.2014.17.4.431.
  53. Wu, D., LI, S., Moayedi, H., Cifci, M.A. and Li, B.N. (2022), "ANN-Incorporated satin bowerbird optimizer for predicting uniaxial compressive strength of concrete", Steel Compos. Struct., 45(2), 281-291. https://doi.org/10.12989/scs.2022.45.2.281.
  54. Xue, W., Peng, F. and Fang, Z. (2018), "Behavior and design of slender rectangular concrete columns longitudinally reinforced with fiber-reinforced polymer bars", ACI Struct. J., 115(2), 311-322. https://doi.org/10.14359/51701131.
  55. Youssef, J. and Hadi, M.N. (2017), "Axial load-bending moment diagrams of GFRP reinforced columns and GFRP encased square columns", Construct. Build. Mater., 135, 550-564. https://doi.org/10.1016/j.conbuildmat.2016.12.125.
  56. Youssf, O., Hassanli, R. and Mills, J.E. (2017), "Mechanical effectiveness of FRP-confined and unconfined crumb rubber concrete containing high rubber content", J. Build. Eng., 11, 115-126. https://doi.org/10.1016/j.jobe.2017.04.011.
  57. Zeng, J., Ye, Y., Yu, T. and Teng, J. (2019), "Axial compression tests on steel-free concrete columns reinforced mainly with hybrid bars", Third International Workshop on Seawater Sea-sand Concrete (SSC) Structures Reinforced with FRP Composites, 10th-11th December
  58. Zeng, J.J., Ye, Y.Y., Quach, W.M., Lin, G., Zhuge, Y. and Zhou, J.K. (2019), "Axial compression tests on steel-free concrete columns reinforced mainly with hybrid bars", Third International Workshop on Seawater Sea-Sand Concrete (SSC) Structures Reinforced with FRP Composites. Shenzhen, China.