DOI QR코드

DOI QR Code

지속가능한 미래를 위한 폐플라스틱의 촉매 업사이클링 연구 동향

Advancing Towards a Sustainable Future: Recent Trends in Catalytic Upcycling of Waste Plastics

  • 권태은 (서울과학기술대학교 화공생명공학과) ;
  • 노인수 (서울과학기술대학교 화공생명공학과)
  • Taeeun Kwon (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology) ;
  • Insoo Ro (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology)
  • 투고 : 2023.08.11
  • 심사 : 2023.09.04
  • 발행 : 2023.11.01

초록

플라스틱은 가공과 처리가 간단하여 매년 생산량이 증가하고 있으며 이에 따라 플라스틱 폐기물의 양 또한 매년 증가하고 있다. 플라스틱 폐기물 문제를 해결하기 위하여 촉매를 활용한 업사이클링 공정은 유망한 해결책으로 제시되고 있다. 다양한 금속(Ru, Pt 등) 및 지지체(TiO2, CeO2 등)가 폴리 올레핀계 플라스틱의 화학적 재활용에 적용되었다. 입자 크기를 조절하고, 지지체의 특성 및 이종 금속을 도입하여 액체 연료의 선택도를 향상시키고 메탄 생성 양을 줄이려는 시도가 있었다. 한편으로는 값비싼 귀금속의 양을 줄임으로써 최적의 촉매를 찾기 위한 연구를 진행하였다. 본 논문에서는 이러한 hydrogenolysis 반응 및 hydrocracking 반응에서 경제성을 높이기 위하여 어떠한 시도들이 있었는지 살펴보고자 한다. 이러한 관점에서 촉매 업사이클링 공정을 통해 플라스틱 폐기물 문제를 해결할 가능성을 제시하고자 한다.

Plastic's ease of processing drives its growing production, resulting in a surge of plastic waste. Addressing this issue, catalytic upcycling emerges as a promising remedy. Various metals (Ru, Pt, etc.) and supports (TiO2, CeO2, etc.) have been employed for the chemical recycling of polyolefin plastics. Strategies to enhance liquid fuel selectivity and minimize methane include manipulating particle size, introducing heterogeneous metals, and tuning support characteristics. Simultaneously, endeavors to optimize catalysts by reducing precious metal usage were pursued. This study explores enhancing economic viability in hydrogenolysis and hydrocracking reactions, underscoring the potential of catalystdriven upcycling to tackle plastic waste.

키워드

과제정보

이 성과는 정부(환경부)의 재원으로 한국환경산업기술원의 녹색융합기술인재양성 특성화대학원 사업의 지원을 받아 수행되었습니다. 또한 본 결과물은 환경부의 재원으로 한국환경산업기술원의(혁신도전형) 플라즈마 활용 폐유기물 고부가가치 기초원료화 기술개발사업의 지원을 받아 연구되었습니다(2022003650002).

참고문헌

  1. Chen, X., Wang, Y. and Zhang, L., "Recent Progress in the Chemical Upcycling of Plastic Wastes," ChemSusChem, 19(14), 4137-4151(2021). https://doi.org/10.1002/cssc.202100868
  2. Ellen MacArthur, F., "The New Plastics Economy: Rethinking the Future of Plastics & Catalysing Action," Ellen MacArthur Foundation, 68-68(2017).
  3. Jones, H., Saffar, F., Koutsos, V. and Ray, D., "Polyolefins and Polyethylene Terephthalate Package Wastes: Recycling and Use in Composites," Energies, 21(14), 1-43(2021).
  4. Geyer, R., Production, use, and fate of synthetic polymers, Elsevier Inc., 2020.
  5. Law, K. L., Starr, N., Siegler, T. R., Jambeck, J. R., Mallos, N. J. and Leonard, G. H., "The United States' Contribution of Plastic Waste to Land and Ocean," Science Advances, 44(6), 1-8(2020). https://doi.org/10.1126/sciadv.abd0288
  6. Serrano, D. P., Aguado, J. and Escola, J. M., "Developing Advanced Catalysts for the Conversion of Polyolefinic Waste Plastics Into Fuels and Chemicals," ACS Catalysis, 9(2), 1924-1941(2012). https://doi.org/10.1021/cs3003403
  7. Kunwar, B., Cheng, H. N., Chandrashekaran, S. R. and Sharma, B. K., "Plastics to Fuel: a Review," Renewable and Sustainable Energy Reviews, 54, 421-428(2016). https://doi.org/10.1016/j.rser.2015.10.015
  8. Vilaplana, F. and Karlsson, S., "Quality Concepts for the Improved Use of Recycled Polymeric Materials: A Review," Macromolecular Materials and Engineering, 4(293), 274-297(2008).
  9. Jung, S. and Ro, I., "Strategic Use of Thermo-chemical Processes for Plastic Waste Valorization," Korean Journal of Chemical Engineering, 1(40), 1-13(2023). https://doi.org/10.1007/s11814-023-1398-y
  10. Nakaji, Y., Tamura, M., Miyaoka, S., Kumagai, S., Tanji, M., Nakagawa, Y., Yoshioka, T. and Tomishige, K., "Low-temperature Catalytic Upgrading of Waste Polyolefinic Plastics Into Liquid Fuels and Waxes," Applied Catalysis B: Environmental, November 2020(285), 119805-119805(2021).
  11. Rorrer, J. E., Beckham, G. T. and Roman-Leshkov, Y., "Conversion of Polyolefin Waste to Liquid Alkanes with Ru-Based Catalysts under Mild Conditions," JACS Au, 1(1), 8-12(2021). https://doi.org/10.1021/jacsau.0c00041
  12. Kots, P. A., Liu, S., Vance, B. C., Wang, C., Sheehan, J. D. and Vlachos, D. G., "Polypropylene Plastic Waste Conversion to Lubricants over Ru/TiO2 Catalysts," ACS Catalysis, 11(13), 8104-8115(2021). https://doi.org/10.1021/acscatal.1c00874
  13. Tamura, M., Miyaoka, S., Nakaji, Y., Tanji, M., Kumagai, S., Nakagawa, Y., Yoshioka, T. and Tomishige, K., "Structure-activity Relationship in Hydrogenolysis of Polyolefins over Ru/support Catalysts," Applied Catalysis B: Environmental, August(318), 121870-121870(2022).
  14. Kim, T., Nguyen-Phu, H., Kwon, T., Kang, K. H. and Ro, I., "Investigating the Impact of TiO(2) Crystalline Phases on Catalytic Properties of Ru/TiO(2) for Hydrogenolysis of Polyethylene Plastic Waste," Environ Pollut, Pt 2(331), 121876(2023).
  15. Wang, C., Yu, K., Sheludko, B., Xie, T., Kots, P. A., Vance, B. C., Kumar, P., Stach, E. A., Zheng, W. and Vlachos, D. G., "A General Strategy and a Consolidated Mechanism for Low-methane Hydrogenolysis of Polyethylene over Ruthenium," Applied Catalysis B: Environmental, 319, 121899(2022).
  16. Chen, L., Meyer, L. C., Kovarik, L., Meira, D., Pereira-Hernandez, X. I., Shi, H., Khivantsev, K., Gutierrez, O. Y. and Szanyi, J., "Disordered, Sub-Nanometer Ru Structures on CeO2 are Highly Efficient and Selective Catalysts in Polymer Upcycling by Hydrogenolysis," ACS Catalysis, 12(8), 4618-4627(2022). https://doi.org/10.1021/acscatal.2c00684
  17. Chu, M., Wang, X., Wang, X., Lou, X., Zhang, C., Cao, M., Wang, L., Li, Y., Liu, S., Sham, T. K., Zhang, Q. and Chen, J., "Site-selective Polyolefin Hydrogenolysis on Atomic Ru for Methanation Suppression and Liquid Fuel Production," Research (Wash D C), 6, 0032(2023).
  18. Martin, A. J., Mondelli, C., Jaydev, S. D. and Perez-Ramirez, J., "Catalytic Processing of Plastic Waste on the Rise," Chem, 6(7), 1487-1533(2021). https://doi.org/10.1016/j.chempr.2020.12.006
  19. Oecd, Global Plastics Outlook, 2022.
  20. PlasticsEurope, "Plastics - the Facts 2022," (2022).
  21. Ministry of Environment, "2021 Korea Waste Generation and Disposal Status," (2022).
  22. Geyer, R., Jambeck, J. R. and Law, K. L., "Production, use, and Fate of All Plastics ever Made," Science Advances, 7(3), 25-29(2017). https://doi.org/10.1126/sciadv.1700782
  23. Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J. H., Abu-Omar, M., Scott, S. L. and Suh, S., "Degradation Rates of Plastics in the Environment," ACS Sustainable Chemistry and Engineering, 9(8), 3494-3511(2020). https://doi.org/10.1021/acssuschemeng.9b06635
  24. Chu, M., Liu, Y., Lou, X., Zhang, Q. and Chen, J., "Rational Design of Chemical Catalysis for Plastic Recycling," ACS Catalysis, 8(12), 4659-4679(2022). https://doi.org/10.1021/acscatal.2c01286
  25. Cox, K. D., Covernton, G. A., Davies, H. L., Dower, J. F., Juanes, F. and Dudas, S. E., "Human Consumption of Microplastics," Environmental Science and Technology, 12(53), 7068-7074(2019). https://doi.org/10.1021/acs.est.9b01517
  26. Schyns, Z. O. G. and Shaver, M. P., "Mechanical Recycling of Packaging Plastics: A Review," Macromolecular Rapid Communications, 3(42), 1-27(2021).
  27. Vollmer, I., Jenks, M. J. F., Roelands, M. C. P., White, R. J., van Harmelen, T., de Wild, P., van der Laan, G. P., Meirer, F., Keurentjes, J. T. F. and Weckhuysen, B. M., "Beyond Mechanical Recycling: Giving New Life to Plastic Waste," Angewandte Chemie - International Edition, 36(59), 15402-15423(2020).
  28. Anuar Sharuddin, S. D., Abnisa, F., Wan Daud, W. M. A. and Aroua, M. K., "A Review on Pyrolysis of Plastic Wastes," Energy Conversion and Management, 115, 308-326(2016). https://doi.org/10.1016/j.enconman.2016.02.037
  29. Munir, D., Irfan, M. F. and Usman, M. R., "Hydrocracking of Virgin and Waste Plastics: A Detailed Review," Renewable and Sustainable Energy Reviews, 90, 490-515(2018). https://doi.org/10.1016/j.rser.2018.03.034
  30. Pichler, C. M., Bhattacharjee, S., Rahaman, M., Uekert, T. and Reisner, E., "Conversion of Polyethylene Waste into Gaseous Hydrocarbons via Integrated Tandem Chemical-Photo/Electrocatalytic Processes," ACS Catal, 15(11), 9159-9167(2021). https://doi.org/10.1021/acscatal.1c02133
  31. Rorrer, J. E., Ebrahim, A. M., Questell-Santiago, Y., Zhu, J., Troyano-Valls, C., Asundi, A. S., Brenner, A. E., Bare, S. R., Tassone, C. J., Beckham, G. T. and Roman-Leshkov, Y., "Role of Bifunctional Ru/Acid Catalysts in the Selective Hydrocracking of Polyethylene and Polypropylene Waste to Liquid Hydrocarbons," ACS Catalysis, 12(22), 13969-13979(2022). https://doi.org/10.1021/acscatal.2c03596
  32. Rorrer, J. E., Troyano-Valls, C., Beckham, G. T. and Roman-Leshkov, Y., "Hydrogenolysis of Polypropylene and Mixed Polyolefin Plastic Waste over Ru/C to Produce Liquid Alkanes," ACS Sustainable Chemistry and Engineering, 35(9), 11661-11666(2021). https://doi.org/10.1021/acssuschemeng.1c03786
  33. Lovas, P., Hudec, P., Jambor, B., Hajekova, E. and Hornacek, M., "Catalytic Cracking of Heavy Fractions from the Pyrolysis of Waste HDPE and PP," Fuel, 203, 244-252(2017). https://doi.org/10.1016/j.fuel.2017.04.128
  34. Rejman, S., Vollmer, I., Werny, M. J., Vogt, E. T. C., Meirer, F. and Weckhuysen, B. M., "Transport Limitations in Polyolefin Cracking at the Single Catalyst Particle Level," Chemical Science, (2023).
  35. Wang, C., Xie, T., Kots, P. A., Vance, B. C., Yu, K., Kumar, P., Fu, J., Liu, S., Tsilomelekis, G., Stach, E. A., Zheng, W. and Vlachos, D. G., "Polyethylene Hydrogenolysis at Mild Conditions over Ruthenium on Tungstated Zirconia," Journal of the American Chemical Society, 9(1), 1422-1434(2021). https://doi.org/10.1021/jacsau.1c00200
  36. Celik, G., Kennedy, R. M., Hackler, R. A., Ferrandon, M., Tennakoon, A., Patnaik, S., Lapointe, A. M., Ammal, S. C., Heyden, A., Perras, F. A., Pruski, M., Scott, S. L., Poeppelmeier, K. R., Sadow, A. D. and Delferro, M., "Upcycling Single-Use Polyethylene into High-Quality Liquid Products," ACS Central Science, 11(5), 1795-1803(2019). https://doi.org/10.1021/acscentsci.9b00722
  37. Wu, X., Tennakoon, A., Yappert, R., Esveld, M., Ferrandon, M. S., Hackler, R. A., LaPointe, A. M., Heyden, A., Delferro, M., Peters, B., Sadow, A. D. and Huang, W., "Size-Controlled Nanoparticles Embedded in a Mesoporous Architecture Leading to Efficient and Selective Hydrogenolysis of Polyolefins," Journal of the American Chemical Society, (2022).
  38. Sun, M., Zhu, L., Liu, W., Zhao, X., Zhang, Y., Luo, H., Miao, G., Li, S., Yin, S. and Kong, L., "Efficient Upgrading of Polyolefin Plastics into C5-C12 Gasoline Alkanes over a Pt/W/Beta Catalyst," Sustainable Energy and Fuels, 2(6), 271-275(2022). https://doi.org/10.1039/D1SE01778K
  39. Liu, S., Kots, P. A., Vance, B. C., Danielson, A. and Vlachos, D. G., "Plastic Waste to Fuels by Hydrocracking at Mild Conditions," Science Advances, 17(7), 1-10(2021). https://doi.org/10.1126/sciadv.abf8283
  40. Utami, M., Wijaya, K. and Trisunaryanti, W., "Pt-promoted Sulfated Zirconia as Catalyst for Hydrocracking of LDPE Plastic Waste into Liquid Fuels," Materials Chemistry and Physics, 213, 548-555(2018). https://doi.org/10.1016/j.matchemphys.2018.03.055
  41. Vance, B. C., Kots, P. A., Wang, C., Hinton, Z. R., Quinn, C. M., Epps, T. H., Korley, L. S. T. J. and Vlachos, D. G., "Single Pot Catalyst Strategy to Branched Products via Adhesive Isomerization and Hydrocracking of Polyethylene over Platinum Tungstated Zirconia," Applied Catalysis B: Environmental, 299, 120483(2021).
  42. Kim, M. Y., Kim, J.-K., Lee, M.-E., Lee, S. and Choi, M., "Maximizing Biojet Fuel Production from Triglyceride: Importance of the Hydrocracking Catalyst and Separate Deoxygenation/Hydrocracking Steps," ACS Catalysis, 9(7), 6256-6267(2017).