DOI QR코드

DOI QR Code

Fe 도핑된 β-Ni(OH)2 마이크로결정 합성과 산소발생반응 특성

Synthesis of Fe-doped β-Ni(OH)2 microcrystals and their oxygen evolution reactions

  • 박제홍 (한국교통대학교 에너지소재공학전공) ;
  • 유시범 (한국교통대학교 에너지소재공학전공) ;
  • 정승원 (한국교통대학교 에너지소재공학전공) ;
  • 김병준 (한국교통대학교 전자공학과) ;
  • 김강민 (한국생산기술연구원 강원본부) ;
  • 유정호 (한국교통대학교 에너지소재공학전공)
  • Je Hong Park (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Si Beom Yu (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Seungwon Jeong (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Byeong Jun Kim (Department of Electronic Engineering, Korea National University of Transportation) ;
  • Kang Min Kim (Korea Institute of Industrial Technology) ;
  • Jeong Ho Ryu (Department of Materials Science and Engineering, Korea National University of Transportation)
  • 투고 : 2023.10.21
  • 심사 : 2023.10.24
  • 발행 : 2023.10.31

초록

수소에너지 생산을 위한 물분해 시스템의 효율을 향상시키기 위해서는, 수소발생반응 (HER)과 산소발생반응(OER) 각각에서 촉매로 인한 전기화학적 반응에서의 높은 과전압의 감소가 수반되어야 한다. 그 중에서도 전이금속 기반의 화합물(수산화물, 황화물 등)은 현재 상용되고 있는 백금 등의 귀금속을 대체할 촉매 재료로써 주목받고 있다. 본 연구에서는, 저렴한 금속 다공성 소재인 Ni foam을 지지체로 사용하고, 수열합성 공정을 통해 β-Ni(OH)2 마이크로결정을 합성하고자 하였다. 또한 전기화학적 특성을 향상시키기 위하여 Fe을 도핑하여 합성된 β-Ni(OH)2 마이크로 결정의 형상, 결정구조 및 물분해 특성의 변화를 관찰하였으며, 상용 수전해 시스템의 촉매로서의 적용가능성을 검토하였다.

In order to improve the efficiency of the water splitting system for hydrogen energy production, the high overvoltage in the electrochemical reaction caused by the catalyst in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) must be reduced. Among them, transition metal-based compounds (hydroxide, sulfide, etc.) are attracting attention as catalyst materials to replace currently used precious metals such as platinum. In this study, Ni foam, an inexpensive metal porous material, was used as a support and β-Ni(OH)2 microcrystals were synthesized through a hydrothermal synthesis process. In addition, changes in the crystal morphology, crystal structure, and water splitting characteristics of β-Ni(OH)2 microcrystals synthesized by doping Fe to improve electrochemical properties were observed, and applicability as a catalyst in a commercial water electrolysis system was examined.

키워드

과제정보

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1A2C2010162).

참고문헌

  1. J. Chow, R.J. Kopp and R.R. Portney, "Energy resources and global development", Science 302 (2003) 1528.
  2. T. Yusaf, A.S.F. Mahamude, K. Kadirgama, D. Ramasamy, K. Farhana, H.A. Dhahad and ABD R.A. Taib, "Systaninable hydrogen energy in aviation - A narrative review", Int. J. Hydrog. Energy, in press.
  3. J. Alazemi and J. Andrews, "Automotive hydrogen fuelling stations: An international review", Renew. Sust. Energ. Rev. 48 (2015) 483.
  4. Y. Feng, X. Wang and J. Wang, "A nitridation route to construct high-activity interfaces toward alkaline hydrogen evolution", J. Mater. Chem. A 10 (2022) 11205.
  5. J. Bak, Y. Heo, T.G. Yun and S.Y. Chung, "Atomic-level manipulations in oxides and alloys for electrocatalysis of oxygen evolution and reduction", ACS Nano 14 (2020) 14323.
  6. A.I. Inamdar, H.S. Chavan, B. Hou, C.H. Lee, S.U. Lee, S. Cha, H. Kim and H. Im, "A robust nonprecious CuFe composite as a highly efficient bifunctional catalyst for overall electrochemical water splitting", Small 16 (2020) 1905884.
  7. T. Kou, S. Wang, J.S. Hauser, M. Chen, S.R.J. Oliver, Y. Ye, J. Guo and Y. Li, "Ni foam-suported Fe-doped β-Ni(OH)2 nanosheets show ultralow overpotential for oxygen evolution reaction", ACS Energy Lett. 4 (2019) 622.
  8. G. Zhao, K. Rui, S.X. Dou and W. Sun, "Heterostructures for electrochemical hydrogen evolution reaction: A review", Adv. Funct. Mater. 28 (2018) 1803291.
  9. J. Wa ng, W. C ui, Q. L iu, Z. Xing, A.M. A siri a nd X . Sun, "Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting", Adv. Mater. 28 (2016) 215.
  10. B. You and Y. Sun, "Innovative strategies for electrocatalytic water splitting", ACS. Chem. Res. 51 (2018) 1571.
  11. S.-F. Hung, Y.-Y. Hsu, C.-J. Chang, C.-S. Hsu, N.-T. Suen, T.-S. Chan and H.M. Chen, "Unraveling geometrical site confinement in highly efficient iron-doped electrocatalysts toward oxygen evolution reaction", Adv. Energy Mater. 8 (2018) 1701686.
  12. S. Anantharaj, S. Kundu and S. Noda, "The Fe effect": A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts", Nano Energy 80 (2021) 105514.
  13. S. Yuan, L.L. Cui, X.Q. He, W. Zhang and T. Asefa, "Nickel foam-supported Fe,Ni-Polyporphyrin microparticles: Efficient bifunctional catalysts for overall water splitting in alkaline media", Int. J. Hydrog. Energy 45 (2020) 28860.
  14. X. Yu, M. Wang, X. Gong, Z. Guo, Z. Wang and S. Jiao, "Self-supporting porous CoP-based films with phaseseparation structure for ultrastable overall water electrolysis at large current density", Adv. Energy Mater. 8 (2018) 1802445.
  15. J. Guo, K. Wang, H. Zhang and H. Zhang, "Enhanced electrocatalytic acitvity of Mo-doped NiFe layered double hydroxide nanosheet arrays for the hydrogen evolution reaction", ACS Appl. Nano Mater. 6 (2023) 379.
  16. J.-I. Lee, S.G. Oh, Y.J. Kim, S.J. Park, G.S. Sin, J.H. Kim and J.H. Ryu, "Electrocatalytic properties of Te incorporated Ni(OH)2 microcrystals grown on Ni foam", J. Kor. Cryst. Growth Cryst. Technol. 31 (2021) 96.
  17. B. You and Y. Sun, "Innovative strategies for electrocatalytic water splitting", ACS. Chem. Res. 51 (2018) 1571.