DOI QR코드

DOI QR Code

Molecular docking study of nuciferine as a tyrosinase inhibitor and its therapeutic potential for hyperpigmentation

  • Received : 2023.07.31
  • Accepted : 2023.09.02
  • Published : 2023.09.30

Abstract

Melanin is synthesized by tyrosinase to protect the skin from ultraviolet light. However, overproduction and accumulation of melanin can result in hyperpigmentation and skin melanoma. Tyrosinase inhibitors are commonly used in the treatment of hyperpigmentation. Natural tyrosinase inhibitors are often favoured over synthetic ones due to the potential side effects of the latter, which can include skin irritation, allergies, and other adverse reactions. Nuciferine, an alkaloid derived from Nelumbo nucifera, exhibits potent antioxidant and anti-proliferative properties. This study focused on the in silico screening of nuciferine for anti-tyrosinase activity, using kojic acid, ascorbic acid, and resorcinol as standards. The tyrosinase protein target was selected through homology modeling. The residues of the substrate binding pocket and active site pockets were identified for the purposes of grid box optimization and docking. Therefore, nuciferine is a potent natural tyrosinase inhibitor and shows promising potential for application in the treatment of hyperpigmentation and skin melanoma.

Keywords

References

  1. Xu H, Wang L, Yan K, Zhu H, Pan H, Yang H, et al. Nuciferine inhibited the differentiation and lipid accumulation of 3T3-L1 preadipocytes by regulating the expression of lipogenic genes and adipokines. Front Pharmacol 2021;12:632236.
  2. Zhang C, Deng J, Liu D, Tuo X, Yu Y, Yang H, et al. Nuciferine inhibits proinflammatory cytokines via the PPARs in LPS-induced RAW264.7 cells. Molecules 2018;23:2723.
  3. Kim SM, Park EJ, Lee HJ. Nuciferine attenuates lipopolysaccharide-stimulated inflammatory responses by inhibiting p38 MAPK/ATF2 signaling pathways. Inflammopharmacology 2022;30:2373-2383. https://doi.org/10.1007/s10787-022-01075-y
  4. Tilaoui M, Ait Mouse H, Zyad A. Update and new insights on future cancer drug candidates from plant-based alkaloids. Front Pharmacol 2021;12:719694.
  5. Bishayee A, Patel PA, Sharma P, Thoutireddy S, Das N. Lotus (Nelumbo nucifera Gaertn.) and its bioactive phytocompounds: a tribute to cancer prevention and intervention. Cancers (Basel) 2022;14:529.
  6. Chen J, Ye Y, Ran M, Li Q, Ruan Z, Jin N. Inhibition of tyrosinase by mercury chloride: spectroscopic and docking studies. Front Pharmacol 2020;11:81.
  7. Zolghadri S, Bahrami A, Hassan Khan MT, Munoz-Munoz J, Garcia-Molina F, Garcia-Canovas F, et al. A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem 2019;34:279-309. https://doi.org/10.1080/14756366.2018.1545767
  8. Ullah S, Park C, Ikram M, Kang D, Lee S, Yang J, et al. Tyrosinase inhibition and anti-melanin generation effect of cinnamamide analogues. Bioorg Chem 2019;87:43-55. https://doi.org/10.1016/j.bioorg.2019.03.001
  9. Omasits U, Ahrens CH, Muller S, Wollscheid B. Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 2014;30:884-886. https://doi.org/10.1093/bioinformatics/btt607
  10. Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993;234:779-815. https://doi.org/10.1006/jmbi.1993.1626
  11. National Center for Biotechnology Information. PubChem Compound Summary for CID 3840, Kojic acid. Bethesda: National Center for Biotechnology Information, 2023. Accessed 2023 Apr 26. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Kojic-acid.
  12. National Center for Biotechnology Information. PubChem Compound Summary for CID 54670067, Ascorbic Acid. Bethesda: National Center for Biotechnology Information, 2023. Accessed 2023 Apr 26. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Ascorbic-Acid.
  13. National Center for Biotechnology Information. PubChem Compound Summary for CID 71543007, Isobutylamido thiazolyl resorcinol. Bethesda: National Center for Biotechnology Information, 2023. Accessed 2023 Apr 26. Available from: https://pub-chem.ncbi.nlm.nih.gov/compound/Isobutylamido-thiazolyl-re-sorcinol.
  14. Roulier B, Rush I, Lazinski LM, Peres B, Olleik H, Royal G, et al. Resorcinol-based hemiindigoid derivatives as human tyrosinase inhibitors and melanogenesis suppressors in human melanoma cells. Eur J Med Chem 2023;246:114972.
  15. Nazir Y, Rafique H, Roshan S, Shamas S, Ashraf Z, Rafiq M, et al. Molecular docking, synthesis, and tyrosinase inhibition activity of acetophenone amide: potential inhibitor of melanogenesis. Biomed Res Int 2022;2022:1040693.
  16. Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: new docking methods, expanded force field, and python bindings. J Chem Inf Model 2021;61:3891-3898. https://doi.org/10.1021/acs.jcim.1c00203
  17. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31:455-461. https://doi.org/10.1002/jcc.21334
  18. Webb B, Sali A. Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 2016;54:5.6.1-5.6.37. https://doi.org/10.1002/cpbi.3
  19. Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A. Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 2000;29:291-325. https://doi.org/10.1146/annurev.biophys.29.1.291
  20. Lai X, Wichers HJ, Soler-Lopez M, Dijkstra BW. Structure and function of human tyrosinase and tyrosinase-related proteins. Chemistry 2018;24:47-55. https://doi.org/10.1002/chem.201704410
  21. Xu X, Sun CR, Dai XJ, Hu RL, Pan YJ, Yang ZF. LC/MS guided isolation of alkaloids from lotus leaves by pH-zone-refining counter-current chromatography. Molecules 2011;16:2551-2560. https://doi.org/10.3390/molecules16032551
  22. Pasam K, Mallojala V, Gunda SK, Bandi S. Homology modelling and molecular docking studies of interleukin 10 proteins from different species. Int J Pharm Invest 2019;9:154-157. https://doi.org/10.5530/ijpi.2019.4.29
  23. Mann T, Gerwat W, Batzer J, Eggers K, Scherner C, Wenck H, et al. Inhibition of human tyrosinase requires molecular motifs distinctively different from mushroom tyrosinase. J Invest Dermatol 2018;138:1601-1608. https://doi.org/10.1016/j.jid.2018.01.019
  24. Kanteev M, Goldfeder M, Fishman A. Structure-function correlations in tyrosinases. Protein Sci 2015;24:1360-1369. https://doi.org/10.1002/pro.2734
  25. Zou C, Huang W, Zhao G, Wan X, Hu X, Jin Y, et al. Determination of the bridging ligand in the active site of tyrosinase. Molecules 2017;22:1836.
  26. Kim DH, Kim SJ, Ullah S, Yun HY, Chun P, Moon HR. Design, synthesis, and antimelanogenic effects of (2-substituted phenyl1,3-dithiolan-4-yl)methanol derivatives. Drug Des Devel Ther 2017;11:827-836. https://doi.org/10.2147/DDDT.S131538
  27. Ishioka W, Oonuki S, Iwadate T, Nihei KI. Resorcinol alkyl glucosides as potent tyrosinase inhibitors. Bioorg Med Chem Lett 2019;29:313-316. https://doi.org/10.1016/j.bmcl.2018.11.029
  28. Senol FS, Khan MT, Orhan G, Gurkas E, Orhan IE, Oztekin NS, et al. In silico approach to inhibition of tyrosinase by ascorbic acid using molecular docking simulations. Curr Top Med Chem 2014;14:1469-1472. https://doi.org/10.2174/1568026614666140610121253
  29. Mann T, Scherner C, Rohm KH, Kolbe L. Structure-activity relationships of thiazolyl resorcinols, potent and selective inhibitors of human tyrosinase. Int J Mol Sci 2018;19:690.
  30. Li J, Feng L, Liu L, Wang F, Ouyang L, Zhang L, et al. Recent advances in the design and discovery of synthetic tyrosinase inhibitors. Eur J Med Chem 2021;224:113744.