DOI QR코드

DOI QR Code

Association of CAPN10 gene (rs3842570) polymorphism with the type 2 diabetes mellitus among the population of Noakhali region in Bangladesh: a case-control study

  • Munia Sultana (Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University) ;
  • Md. Mafizul Islam (Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University) ;
  • Md. Murad Hossain (Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University) ;
  • Md. Anisur Rahman (Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University) ;
  • Shuvo Chandra Das (Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University) ;
  • Dhirendra Nath Barman (Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University) ;
  • Farhana Siddiqi Mitu (Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University) ;
  • Shipan Das Gupta (Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University)
  • 투고 : 2023.03.30
  • 심사 : 2023.07.02
  • 발행 : 2023.09.30

초록

Type 2 diabetes mellitus (T2DM) is a multifactorial, polygenic, and metabolically complicated disease. A large number of genes are responsible for the biogenesis of T2DM and calpain10 (CAPN10) is one of them. The association of numerous CAPN10 genetic polymorphisms in the development of T2DM has been widely studied in different populations and noticed inconclusive results. The present study is an attempt to evaluate the plausible association of CAPN10 polymorphism SNP-19 (rs3842570) with T2DM and T2DM-related anthropometric and metabolic traits in the Noakhali region of Bangladesh. This case-control study included 202 T2DM patients and 75 healthy individuals from different places in Noakhali. A significant association (p < 0.05) of SNP-19 with T2DM in co-dominant 2R/3R vs. 3R/3R (odds ratio [OR], 2.7; p=0.0014) and dominant (2R/3R) + (2R/2R) vs. 3R/3R (OR, 2.47; p=0.0011) genetic models was observed. High-risk allele 2R also showed a significant association with T2DM in the allelic model (OR, 1.67; p=0.0109). The genotypic frequency of SNP-19 variants showed consistency with Hardy-Weinberg equilibrium (p > 0.05). Additionally, SNP-19 genetic variants showed potential associations with the anthropometric and metabolic traits of T2DM patients in terms of body mass index, systolic blood pressure, diastolic blood pressure, total cholesterol, and triglycerides. Our approach identifies the 2R/3R genotype of SNP-19 as a significant risk factor for biogenesis of T2DM in the Noakhali population. Furthermore, a large-scale study could be instrumental to correlate this finding in overall Bangladeshi population.

키워드

과제정보

This work was supported by the 'Noakhali Science and Technology University- Research Cell' Teachers' grant of the budget year 2021-2022 (Project ID: NSTU/RC-BG-06/T-23/32). We are thankful to the director and all medical staffs of Al-Haj Sirajul Islam Diabetic Hospital in Maijdee, Noakhali for helping us sample and data collection.

참고문헌

  1. Permutt MA, Wasson J, Cox N. Genetic epidemiology of diabetes. J Clin Invest 2005;115:1431-1439. https://doi.org/10.1172/JCI24758
  2. Rana HM, Chavda P, Rathod CC, Mavani M. Socio-demographic and anthropometric profile of diabetic patients attending diabetes clinic in tertiary care hospital of Central Gujarat. Natl J Community Med 2015;6:554-557.
  3. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 2022;183:109119.
  4. International Diabetes Federation. IDF Diabetes Atlas. 8th ed. Brussels: International Diabetes Federation, 2015.
  5. Hussain A, Vaaler S, Sayeed MA, Mahtab H, Ali SM, Khan AK. Type 2 diabetes and impaired fasting blood glucose in rural Bangladesh: a population-based study. Eur J Public Health 2007;17:291-296. https://doi.org/10.1093/eurpub/ckl235
  6. Solanki N, Virk A, Gupta BP, Singh J. Prevalence and risk factors of diabetes mellitus among adults residing in field practice area of a teaching Hospital in Punjab. Healthline J 2015;6:57-62.
  7. Biswas T, Islam A, Rawal LB, Islam SM. Increasing prevalence of diabetes in Bangladesh: a scoping review. Public Health 2016;138:4-11. https://doi.org/10.1016/j.puhe.2016.03.025
  8. Fottrell E, Ahmed N, Morrison J, Kuddus A, Shaha SK, King C, et al. Community groups or mobile phone messaging to prevent and control type 2 diabetes and intermediate hyperglycaemia in Bangladesh (DMagic): a cluster-randomised controlled trial. Lancet Diabetes Endocrinol 2019;7:200-212. https://doi.org/10.1016/S2213-8587(19)30001-4
  9. Hussain A, Claussen B, Ramachandran A, Williams R. Prevention of type 2 diabetes: a review. Diabetes Res Clin Pract 2007;76:317-326. https://doi.org/10.1016/j.diabres.2006.09.020
  10. Barroso I. Genetics of type 2 diabetes. Diabet Med 2005;22:517-535. https://doi.org/10.1111/j.1464-5491.2005.01550.x
  11. Florez JC. Clinical review: the genetics of type 2 diabetes: a realistic appraisal in 2008. J Clin Endocrinol Metab 2008;93:4633-4642. https://doi.org/10.1210/jc.2008-1345
  12. Ghosh S, Watanabe RM, Hauser ER, Valle T, Magnuson VL, Erdos MR, et al. Type 2 diabetes: evidence for linkage on chromosome 20 in 716 Finnish affected sib pairs. Proc Natl Acad Sci U S A 1999;96:2198-2203. https://doi.org/10.1073/pnas.96.5.2198
  13. Wiltshire S, Hattersley AT, Hitman GA, Walker M, Levy JC, Sampson M, et al. A genomewide scan for loci predisposing to type 2 diabetes in a U.K. population (the Diabetes UK Warren 2 Repository): analysis of 573 pedigrees provides independent replication of a susceptibility locus on chromosome 1q. Am J Hum Genet 2001;69:553-569. https://doi.org/10.1086/323249
  14. Fullerton SM, Bartoszewicz A, Ybazeta G, Horikawa Y, Bell GI, Kidd KK, et al. Geographic and haplotype structure of candidate type 2 diabetes susceptibility variants at the calpain-10 locus. Am J Hum Genet 2002;70:1096-1106. https://doi.org/10.1086/339930
  15. Cox NJ, Hayes MG, Roe CA, Tsuchiya T, Bell GI. Linkage of calpain 10 to type 2 diabetes: the biological rationale. Diabetes 2004;53 Suppl 1:S19-25. https://doi.org/10.2337/diabetes.53.2007.S19
  16. Tsuchiya T, Schwarz PE, Bosque-Plata LD, Geoffrey Hayes M, Dina C, Froguel P, et al. Association of the calpain-10 gene with type 2 diabetes in Europeans: results of pooled and meta-analyses. Mol Genet Metab 2006;89:174-184. https://doi.org/10.1016/j.ymgme.2006.05.013
  17. Weedon MN, Schwarz PE, Horikawa Y, Iwasaki N, Illig T, Holle R, et al. Meta-analysis and a large association study confirm a role for calpain-10 variation in type 2 diabetes susceptibility. Am J Hum Genet 2003;73:1208-1212. https://doi.org/10.1086/379285
  18. Ma H, Fukiage C, Kim YH, Duncan MK, Reed NA, Shih M, et al. Characterization and expression of calpain 10: a novel ubiquitous calpain with nuclear localization. J Biol Chem 2001;276:28525-28531. https://doi.org/10.1074/jbc.M100603200
  19. Ezzidi I, Mtiraoui N, Nemr R, Kacem M, Al-Khateeb GM, Mahjoub T, et al. Variants within the calpain-10 gene and relationships with type 2 diabetes (T2DM) and T2DM-related traits among Tunisian Arabs. Diabetes Metab 2010;36:357-362. https://doi.org/10.1016/j.diabet.2010.03.005
  20. Turner MD, Fulcher FK, Jones CV, Smith BT, Aganna E, Partridge CJ, et al. Calpain facilitates actin reorganization during glucose-stimulated insulin secretion. Biochem Biophys Res Commun 2007;352:650-655. https://doi.org/10.1016/j.bbrc.2006.11.077
  21. Ling C, Groop L, Guerra SD, Lupi R. Calpain-10 expression is elevated in pancreatic islets from patients with type 2 diabetes. PLoS One 2009;4:e6558.
  22. Orho-Melander M, Klannemark M, Svensson MK, Ridderstrale M, Lindgren CM, Groop L. Variants in the calpain-10 gene predispose to insulin resistance and elevated free fatty acid levels. Diabetes 2002;51:2658-2664. https://doi.org/10.2337/diabetes.51.8.2658
  23. Turner MD, Cassell PG, Hitman GA. Calpain-10: from genome search to function. Diabetes Metab Res Rev 2005;21:505-514. https://doi.org/10.1002/dmrr.578
  24. Panico P, Salazar AM, Burns AL, Ostrosky-Wegman P. Role of calpain-10 in the development of diabetes mellitus and its complications. Arch Med Res 2014;45:103-115. https://doi.org/10.1016/j.arcmed.2014.01.005
  25. Horikawa Y, Oda N, Cox NJ, Li X, Orho-Melander M, Hara M, et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 2000;26:163-175. https://doi.org/10.1038/79876
  26. Evans JC, Frayling TM, Cassell PG, Saker PJ, Hitman GA, Walker M, et al. Studies of association between the gene for calpain-10 and type 2 diabetes mellitus in the United Kingdom. Am J Hum Genet 2001;69:544-552. https://doi.org/10.1086/323315
  27. Cassell PG, Jackson AE, North BV, Evans JC, Syndercombe-Court D, Phillips C, et al. Haplotype combinations of calpain 10 gene polymorphisms associate with increased risk of impaired glucose tolerance and type 2 diabetes in South Indians. Diabetes 2002;51:1622-1628. https://doi.org/10.2337/diabetes.51.5.1622
  28. Demirci H, Yurtcu E, Ergun MA, Yazici AC, Karasu C, Yetkin I. Calpain 10 SNP-44 gene polymorphism affects susceptibility to type 2 diabetes mellitus and diabetic-related conditions. Genet Test 2008;12:305-309. https://doi.org/10.1089/gte.2007.0118
  29. Zaharna MM, Abed AA, Sharif FA. Calpain-10 gene polymorphism in type 2 diabetes mellitus patients in the Gaza Strip. Med Princ Pract 2010;19:457-462. https://doi.org/10.1159/000320304
  30. El-Far SW, Kassem HS, Embaby AM, Saad AA, Mowafy N, Haroun M. Association of CAPN10 haplotype combinations with type 2 diabetes mellitus and metabolic syndrome among Egyptians: pilot study-genotyping of three CAPN10 variants. Egypt J Med Hum Genet 2022;23:26.
  31. Picos-Cardenas VJ, Sainz-Gonzalez E, Miliar-Garcia A, Romero-Zazueta A, Quintero-Osuna R, Leal-Ugarte E, et al. Calpain-10 gene polymorphisms and risk of type 2 diabetes mellitus in Mexican mestizos. Genet Mol Res 2015;14:2205-2215. https://doi.org/10.4238/2015.March.27.6
  32. Sharma R, Matharoo K, Kapoor R, Chopra H, Bhanwer AJ. Ethnic differences in CAPN10 SNP-19 in type 2 diabetes: a NorthWest Indian case control study and evidence from meta-analysis. Genet Res (Camb) 2013;95:146-155. https://doi.org/10.1017/S0016672313000207
  33. Bodhini D, Radha V, Ghosh S, Sanapala KR, Majumder PP, Rao MR, et al. Association of calpain 10 gene polymorphisms with type 2 diabetes mellitus in Southern Indians. Metabolism 2011;60:681-688.
  34. Tursinawati Y, Hakim RF, Rohmani A, Kartikadewi A, Sandra F. CAPN10 SNP-19 is associated with susceptibility of type 2 diabetes mellitus: a Javanese case-control study. Indones Biomed J 2020;12:109-114. https://doi.org/10.18585/inabj.v12i2.984
  35. Kang ES, Nam M, Kim HJ, Kim HJ, Myoung SM, Rhee Y, et al. Haplotype combination of Calpain-10 gene polymorphism is associated with metabolic syndrome in type 2 diabetes. Diabetes Res Clin Pract 2006;73:268-275. https://doi.org/10.1016/j.diabres.2006.01.011
  36. Saez ME, Gonzalez-Sanchez JL, Ramirez-Lorca R, Martinez-Larrad MT, Zabena C, Gonzalez A, et al. The CAPN10 gene is associated with insulin resistance phenotypes in the Spanish population. PLoS One 2008;3:e2953.
  37. Paredes M, Lizaraso F, Lisson R, Rodriguez EG, Calderon J, Huapaya J. Association of SNP19 in the "calpain 10" gene to type 2 diabetes mellitus and risk factors in Peruvian population. Av Diabetol 2010;26:184-188. https://doi.org/10.1016/S1134-3230(10)63010-4
  38. Shima Y, Nakanishi K, Odawara M, Kobayashi T, Ohta H. Association of the SNP-19 genotype 22 in the calpain-10 gene with elevated body mass index and hemoglobin A1c levels in Japanese. Clin Chim Acta 2003;336:89-96. https://doi.org/10.1016/S0009-8981(03)00320-6
  39. Mendoza-Lorenzo P, Salazar AM, Cortes-Arenas E, Saucedo R, Taja-Chayeb L, Flores-Dorantes MT, et al. The reduction of Calpain-10 expression is associated with risk polymorphisms in obese children. Gene 2013;516:126-131. https://doi.org/10.1016/j.gene.2012.12.053
  40. Arslan E, Acik L, Gunaltili G, Ayvaz G, Altinova AE, Arslan M. The effect of calpain-10 gene polymorphism on the development of type 2 diabetes mellitus in a Turkish population. Endokrynol Pol 2014;65:90-95. https://doi.org/10.5603/EP.2014.0013
  41. Orozco AC, Munoz AM, Velasquez CM, Uscategui RM, Parra MV, Patino FA, et al. Variant in CAPN10 gene and environmental factors show evidence of association with excess weight among young people in a Colombian population. Biomedica 2014;34:546-555.
  42. Wu B, Takahashi J, Fu M, Cheng H, Matsumura S, Taniguchi H. Variants of calpain-10 gene and its association with type 2 diabetes mellitus in a Chinese population. Diabetes Res Clin Pract 2005;68:155-161. https://doi.org/10.1016/j.diabres.2004.09.015
  43. Meza-Espinoza JP, Leal-Ugarte E, Peralta-Leal V, Flores-Villarreal LE, Picos-Cardenas VJ, Sainz-Gonzalez E, et al. Association of CAPN10 SNP-19 with metabolic traits in Mexican patients with type 2 diabetes. Int J Hum Genet 2019;19:48-53.
  44. Ranganathan P, Aggarwal R, Pramesh CS. Common pitfalls in statistical analysis: odds versus risk. Perspect Clin Res 2015;6:222-224. https://doi.org/10.4103/2229-3485.167092
  45. Cauchi S, El Achhab Y, Choquet H, Dina C, Krempler F, Weitgasser R, et al. TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis. J Mol Med (Berl) 2007;85:777-782. https://doi.org/10.1007/s00109-007-0203-4
  46. Salauddin A, Chakma K, Hasan MM, Akter F, Chowdhury NA, Chowdhury SR, et al. Association between TCF7L2 polymorphism and type 2 diabetes mellitus susceptibility: a case-control study among the Bangladeshi population. Mol Biol Rep 2023;50:609-619. https://doi.org/10.1007/s11033-022-08081-x
  47. Borah M, Goswami RK. Sociodemographic and clinical characteristics of a diabetic population at a tertiary care center in Assam, India. J Soc Health Diabetes 2017;5:37-42. https://doi.org/10.4103/2321-0656.193997
  48. Iwasaki N, Horikawa Y, Tsuchiya T, Kitamura Y, Nakamura T, Tanizawa Y, et al. Genetic variants in the calpain-10 gene and the development of type 2 diabetes in the Japanese population. J Hum Genet 2005;50:92-98. https://doi.org/10.1007/s10038-004-0225-5
  49. Malecki MT, Moczulski DK, Klupa T, Wanic K, Cyganek K, Frey J, et al. Homozygous combination of calpain 10 gene haplotypes is associated with type 2 diabetes mellitus in a Polish population. Eur J Endocrinol 2002;146:695-699. https://doi.org/10.1530/eje.0.1460695
  50. Rasmussen SK, Urhammer SA, Berglund L, Jensen JN, Hansen L, Echwald SM, et al. Variants within the calpain-10 gene on chromosome 2q37 (NIDDM1) and relationships to type 2 diabetes, insulin resistance, and impaired acute insulin secretion among ScandinavianCaucasians. Diabetes 2002;51:3561-3567. https://doi.org/10.2337/diabetes.51.12.3561
  51. Bhori M, Tungare K, More S, Sukumaran S, Vidhate D, Gharat A, et al. Association study between T2DM and CAPN10 SNP-19 (rs3842570) polymorphism in Navi Mumbai population. Asian Pac J Health Sci 2022;9:178-182. https://doi.org/10.21276/apjhs.2022.9.2.36
  52. Alzubaidi ZF, Hussain MK, Zainy AT, Ibrahim SL. Association of calpain-10 gene (rs2975760 and rs3792267) polymorphism with type 2 diabetes mellitus in the Iraqi population. Medico-Legal Update 2021;21:134-143. https://doi.org/10.37506/mlu.v21i3.2974
  53. Bayramci NS, Acik L, Kalkan C, Yetkin I. Investigation of glucocorticoid receptor and calpain-10 gene polymorphisms in Turkish patients with type 2 diabetes mellitus. Turk J Med Sci 2017;47:1568-1575. https://doi.org/10.3906/sag-1701-174
  54. Ezzidi I, Turki A, Messaoudi S, Chaieb M, Kacem M, Al-Khateeb GM, et al. Common polymorphisms of calpain-10 and the risk of Type 2 Diabetes in a Tunisian Arab population: a case-control study. BMC Med Genet 2010;11:75.
  55. Loya Mendez Y, Reyes Leal G, Sanchez Gonzalez A, Portillo Reyes V, Reyes Ruvalcaba D, Bojorquez Rangel G. SNP-19 genotypic variants of CAPN10 gene and its relation to diabetes mellitus type 2 in a population of Ciudad Juarez, Mexico. Nutr Hosp 2014;31:744-750.