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Mild cognitive impairment (MCI) is a clinical syndrome characterized by the onset and
evolution of cognitive impairments, often considered a transitional stage to Alzheimer's
disease (AD). The genetic traits of MCI patients who experience a rapid progression to AD
can enhance early diagnosis capabilities and facilitate drug discovery for AD. While a ge-
nome-wide association study (GWAS) is a standard tool for identifying single nucleotide
polymorphisms (SNPs) related to a disease, it fails to detect SNPs with small effect sizes
due to stringent control for multiple testing. Additionally, the method does not consider
the group structures of SNPs, such as genes or linkage disequilibrium blocks, which can
provide valuable insights into the genetic architecture. To address the limitations, we pro-
pose a Bayesian bi-level variable selection method that detects SNPs associated with time
of conversion from MCI to AD. Our approach integrates group inclusion indicators into an
accelerated failure time model to identify important SNP groups. Additionally, we employ
data augmentation techniques to impute censored time values using a predictive posterior.
We adapt Dirichlet-Laplace shrinkage priors to incorporate the group structure for
SNP-level variable selection. In the simulation study, our method outperformed other com-
peting methods regarding variable selection. The analysis of Alzheimer's Disease Neuroim-
aging Initiative (ADNI) data revealed several genes directly or indirectly related to AD,
whereas a classical GWAS did not identify any significant SNPs.

Keywords: Bayesian variable selection, genome-wide association studies, group structure,
linkage disequilibrium, survival analysis

Introduction

Mild cognitive impairment (MCI) is a clinical syndrome characterized by the onset and
evolution of cognitive impairments. As 10%-15% of MCI patients develop Alzheimer's
disease (AD) annually, MCI is commonly regarded as a transitional stage to AD. Identify-
ing genetic characteristics among MCI patients who experience an accelerated progres-
sion to AD is important in enabling early diagnosis and facilitating drug discovery for AD.
Genome-wide association studies (GWAS) are a standard tool for identifying single nu-
cleotide polymorphisms (SNPs) associated with specific clinical conditions or outcomes.
Researchers can delineate the genetic factors related to the rapid progression from MCI
to AD as a phenotype in a GWAS by using the time of conversion from MCI to AD.

As approximately 500,000 to one million candidate SNPs exist, a GWAS deals with
high-dimensional data, where the number of variables (SNPs in a GWAS) p is much
greater than sample size n. A classical GWAS conducts several association tests, so called
multiple testing, that examine an individual effect of each SNP on a clinical outcome. The
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classical GWAS has two major limitations. First, GWAS has a mul-
tiple testing issue, which requires adequate control of false posi-
tives. Typically, the significance level of each test is adjusted by a
Bonferroni correction. The significance level widely accepted to
determine “genome-wide significant” association is 5 x 10°[1,2],
which is a strict threshold and makes genome-wide significance
difficult to be achieved. Second, the GWAS does not account for
the intricate group structure among SNPs such as genes or linkage
disequilibrium (LD) blocks. LD reflects how much an allele from
a particular genetic variant is associated or inherited with an allele
from another nearby genetic variant within the same population
[3]. Incorporating the group information within the GWAS would
increase statistical power by aggregating small effects of SNPs
within a group.

To resolve the multiple testing issue, many statistical methods
have been developed in terms of penalization [4-7], Bayesian vari-
able selection [8,9], and sure independence screening strategy
[10-12]. Researchers proposed variable selection methods by in-
corporating the group information to select genetic variants in
both gene and SNP levels simultaneously [13-16]. While these
methods are suitable for a continuous or binary outcome, only a
limited number of studies for a time-to-event outcome are avail-
able. Bi et al. [17] developed a saddlepoint approximation imple-
mentation to correct p-values based on the Cox regression model.
A Bayesian survival model with variable selection was proposed
with application to GWAS [18]. Lin et al. [19] proposed ker-
nel-machine SNP-set analysis to assess the group effect of each
SNP-set on the survival time.

We propose a Bayesian bi-level variable selection (BBVS) meth-
od to detect SNPs associated with a time-to-event outcome by
considering all the SNPs simultaneously and incorporating the
group information of the SNP data, based on an accelerated failure
time (AFT) model. Our method has two hierarchical levels of
variable selection: the first level is group-wise and the second level
is element-wise variable selection. In the first level, we identify im-
portant groups of variables by employing group inclusion indica-
tors in the AFT model and update the censored event time from
its predictive posterior distribution by data augmentation
[18,20,21]. As this step generates posterior samples of censored
time to event, their posterior mean will be used as an imputed val-
ue for the censored event time in the second level. In the second
level, we only include variables in the selected groups in the first
level as covariates in the regression model. To conduct ele-
ment-wise variable selection, we adapt Dirichlet-Laplace shrinkage
priors [22] to incorporate the group structure.

The rest of this paper is organized as follows. In the “Methods”
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section, we discuss our BBVS in the AFT model. In the Results
and Discussion section, we present simulation study results to vali-
date and compare the performance of BBVS with other group/
bi-level selection methods. We discuss the real data analysis results
for Alzheimer’s Disease Neuroimaging Initiative (ADNI) data.

Methods

Accelerated failure time model

An AFT model is a parametric model to analyze a time-to-event
outcome. While Cox regression postulates that covariates are multi-
plicatively related to the hazard, an AFT model assumes a direct re-
lationship between time to event and covariates, which enables
straightforward interpretation of regression coefficients. For the i-th
subject,Y; is survival time and x, = (1, x,, X, *++, &,,)' is a covariate
vector. The first element of 1 allows estimation of the y-intercept.
Subsequently, AFT model is given by Y, = exp(x,B)v, i = 1, -+, n. It
becomes the linear model in a log scale log¥; = x,B+€, i =1, -+,
where B = (B, ,, -+, B,) is a vector of p + 1 unknown regression co-
efficients including the y-intercept of , and €; = log v; is an error
term. Generally, the error term is assumed to follow the parametric
distribution, such as normal distribution. The parametric AFT
model is discussed extensively in [23-26] of the frequentist frame-
work. Bayesian approaches were developed for the parametric AFT
model [27-29]. In this paper, we consider a parametric Bayesian ap-
proach to model the error term €, with a normal distribution.

BBVS in accelerated failure time model

‘We propose a BBVS method on the AFT model. This method has
two hierarchical levels of variable selection, the group-wise and the
element-wise variable selection. It is motivated by natural grouping
structures of SNPs, which can be captured by genes or LD blocks.
By making use of the group structure in the model frame, we can
efficiently select a small number of SNPs associated with a time-
to-event outcome.

With predefined G blocks we can write our model as follows.

G
logY; = x;oBo + Z YoXigBg + €l =1,,n,
g=1
where x;, = (1, AT x?,p071); B = (,Bo,o: Bow * .Bo,p071)- For each

g-th group of variables, x;, = (xS x5y -, x,%(g), B.= (Bg,l’ Be s ﬂg’kg).
Denote B = (B, Ba), ¥ = (yu **) 75), where 7, is an indicator

(1)

variable having 0 or 1. When 7, = 1, the g-th set of variables will be
included in the model. If y, = 0, we remove the g-th group in the

model construction. The covariates x{,, -+, x7, _, are included in
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the model to address their effects on the time to event. They can
be clinical and demographic characteristics of subjects. The error
term €5 are assumed to be independently distributed as N(0,0);
hence, that the failure time Y; follows a log-Normal distribution.
When y; is possibly right censored, we only observe t, = min(Y,c,)
and v, = I{y<c}, where c, is the censoring time. Here w, = log(y,)
can be considered as the augmented data such that

w; = log(t;) if vi =1, @

w; > log(t;) if v = 0.

Our bi-level variable selection method addresses two issues in the
model (1): the selection of the relevant groups of SNPs and the
imputation of the censored time to event y,. In the first step, we
identify important groups of variables by updating only the group
inclusion vector y and the censored time y, from their posterior
distributions. In the second step, the model (1) can be reduced by

N 3)
logY; = x; ,Bo + Z YgXig Og + €1 =1,--,n,
g=1

where x;, g= 1,2, -+, Qare the Q selected groups in the first step,
and 0, g=1,2, -+, Qare the corresponding regression coefficient
vectors. The censored time to event y, is imputed by the mean of
the posterior samples of w; collected in the first step. It converts the
AFT model to a usual log-linear regression problem.

We employ a shrinkage prior on the regression parameters 6, to
enable the element-wise variable selection within x;,, g=1,2, -+, Q.
We consider a Dirichlet-Laplace (DL) prior proposed by Bhat-
tacharya et al. [22] on the regression parameters and extend it to
incorporate grouping information. As the regression parameters
By, B and the standard deviation o of the error term are not of inter-
ests, the computational burden in the first step can be reduced by
integrating out the irrelevant parameters, f,, B, o from the full pos-
terior distribution. This kind of strategy has been employed in Sha
et al. [20], although their variable selection has been conducted

only in an element-wise fashion.

The first step: group-wise variable selection

In the first step, we consider the following conjugate priors.
Bola? ~ N(0,0%hyl,,)
Bylo? ~ N(0,ce0% %), 9=1,,G
0% ~ 1G(vy/2,v90%/2)
yj ~ Bernoulli(p;)
pj ~ Beta(a,b)

https://doi.org/10.5808/gi.23047

In the prior, X, = [%,, -+, %,,], X, = [%,, -+, %,,], X = [X, X}, -,
X, 2= (Xng)'l when k<nand ¥ = (Xg'Xg+ng)f1 when k,>n for
the g-th group with size k.. The prior on f, is the Information Ma-
trix (IM) or Information Matrix Ridge (IMR) prior proposed by
Gupta and Ibrahim [30]. It is a generalization of Zellner's g-prior
[31], while the IM prior is equal to the Zellner's g-prior in the

Gaussian linear regression setting. The full posterior distribution
of (ﬁg, B o) is given by,
L(Bo, BV, 0% W, X) « L(W|X, Bo B, 0%, ¥)n(Bolo®)m(BloD)n(y)m(c?)

n

G 2
1 ’ ’
« (02)"2exp _thz (Wi — xi,oﬁO - Z Yy xi,gB9>

i=1 g=1
G

2Y—Do/2 1 '
X (g)"Po/“exp —Wﬂoﬂo

£ 1 Vo0¢
l l _ o v/ 000
X (0.2) kg/Zexp {_mpgzglﬂg} X (0.2) Vo/2 1exp (_ ! )

20
g=1

G G
1
Y, - _ _
X Hpgg(l - pg)l & Xl_[B(a b) Py a _pg)b '
g=1 g=1 "

By integrating out B, B, ¢, we can obtain the posterior distribution
ofy:

_ntve

G -1 2
LiyIw, X) < voaé +w' <I + hoXoX§ + co Z Yg XngXA’,> w
g=1

G
[ Trr-p)™
g=1

Foragiven ¥y = (Y, """ Y1y Y1y ***» Yo), the posterior distribu-
tion of v, is the Bernoulli distribution with success probability

A
Y where
A= fi(w|v, UO(Ay(g) + COYngZng;)) X Pg»

B = ft(W|V0,O'0Ay(g)) X (1 - pg)r

and Ay(g) =1+ hoXoX, + co Zg#:g YiXk 2k X}, . The function

f: (- [v, 3?) denotes the probability density function of t-distribu-
tion with the degrees of freedom v and the scale parameter o’.
Then, update p, from its posterior distribution Beta(a + Yob+1-
Yg)~ The marginal likelihood of the augmented data w can be de-
rived as

vo+n

-1 2
L(W|X,y) « [1 I <1 + hoXoXy + co Xh=1 nggng,f> w} ,

Vool

which is proportional to the truncated n-dimensional multivariate

t-distribution with truncation given by (2) as follows.
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G

WX, y~ty [v0,0,08 | I + hoXoX, + o Z YoXgXgXg
g=1
By using the full conditional distribution of w; for a censored case
v;=0, the censored time w, can be imputed by its posterior mean.
Denote H, = I + hoXoXq + Cozg=1VngZgXé: where h, ; is a
scalar element in i-th row, j-th column of H, and H; is the matrix
H, without its i-th row and j-th column, and h{’is the i-th row of
H, without its i-th element. Similarly, let w" be the vector w with-
out its i-th element. When w, is censored, its full conditional distri-
bution can be written as a truncated ¢ location-scale distribution
such that

(4)

Wllw(l)’X'y ~ tn+v0—1(ﬂwir SWl')’ Wi > log(tl)

where y,,, 5, and n + v, — 1 are respectively the location, scale, and
degrees of freedom parameters. The location and scale parameters

are given by

luWi = hfl) H(_li)wfl),

Sw; = \/(h(i.i) - hEL)H(_L-j)h?) ) (voog + WEL)H(_I-})WE[)) /(n+vy—1).

The censored w, will be updated from (4) at each iteration and it
will be imputed as their posterior mean in the element-wise selec-
tion step.

After running Gibbs sampling with M iterations, posterior inclu-
sion probability can be calculated from the posterior sample of y
as their posterior mean, p; = %Z%:l yém). The posterior inclu-
sion probability 1-Pg can be considered as Bayesian g-values, or
estimates of the local false discovery rate (FDR) [32,33], because
they measure the probability of a false positive if the g-th group is
“decided” to be included in the model. To select important groups,
for some threshold p*, we consider that any group with pg > p* is
relevant and will include them in our model. We determined the
threshold p* to control the average Bayesian FDR by using the
method proposed by Morris et al. [34].

The second step: element-wise variable selection

In this step, we include all the variables of the Q selected groups in
the first step and assume shrinkage priors on the regression param-
eters 0, -+, 0, to achieve further sparsity in the element-wise level
in the reduced model (3). As a shrinkage prior, the DL prior is as-
sumed and extended to incorporate grouping information. The
DL prior has been proposed in [22] as a novel form of shrinkage

prior. Under the normal means setting

yi=0;+€,6~N(O1),1<i<p,
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the true signal 6, has a DL prior, which has a hierarchical structure
such that

0jlw), ¢, T~NW;$;°t2), wi~Exp(1/2), ()
¢~Dir(a,-,a), 17~Gamma(pa,1/2),

where ¢=(¢,, ¢y, =+, ¢,). To efficiently control the global shrink-
age, they introduced global (7) and local (¢) scales, where the lo-
cal scales have a joint structure such that they lie in the (p-1) di-
mensional simplex. Under the moderate-sized coefficients with
sparse signal setting, their simulation study has shown that the DL
prior outperforms least absolute shrinkage and selection operator
(Lasso), Bayesian Lasso, empirical Bayes median, and point mass
prior, while its performance is similar to that of Horseshoe prior.
In our model framework, we have prespecified grouping infor-
mation. In order to get more flexibility depending on the grouping
structure, we allow the hyperparameters ¥, ¢, and 7 in () to be
group index(g)-dependent. In the selected group g, there are q_g
variables and the total number of selected variables in the model
(3)isq = Zgzl q4- Here, we impute w by the posterior mean W
obtained from the group-wise selection step. For g =1, 2, -+, Q,
the priors are set to be
(6)
0, |02, Py, g1~ N(O, 0225)

02~ 1G(vy/2,vy08/2)
Ygj ~ Exp(1/2),j =1,-,q4

(¢glr Y ¢gqg) ~ Dir(ag' T ag)
a a
T4 ~ gamma(qgag, 1/2)
a

1 1

ag ~ Discrete uniform from — to > with length 50,
a 99 2

where ZE = diag (¢g1¢51T5' Ty 1/ngg ¢g§qgfg§)y

]pg = (wglv :lpgqg)r ¢g = (¢glv : ¢gqg). Here IG(OI,b) de-

notes the inverse agamma distribution with shape parameter a and

the rate parameter b.
Denote x;, = <x*i‘1,-'-,x*i_Q),0' = (01',---,0Q’),

¢ = ('), ¥ =Wy W) and 7= (r1,,70)-
The design matrix is given by X; = [x;,g' e x:z,g]’ for each g,
and x* = [X7,--,Xp]| for all the groups. £ is a block diagonal
matrix with element matrices j, -, X . By combining (3) and

(6), the posterior distribution can be obtained as

https://doi.org/10.5808/gi.23047
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L(Bo, 0,52, ¢, P, 7|, X*) (7)
X., 08,521 (Bolo?)n(0l02, ¢, 1, (0 M)n($) n(W)n(x)

1 n . . 2
< (02)—n/Zexp {_ﬁz (Wj — xi,oﬁo — xi*0> }

=1
1 ’
X exp _WﬁoﬁO

1 Vo0¢
x det(a22*)"2exp {—me Z*_IO} X (%) ™Vo/2 lexp (— 2003>

dg .
xexp( Zg 12é 11»[’91) 1_[<B(¢g)l_[¢ag—1>
Q
Xl_[ Agag- 1exp T;)}'

g=1

o L(Ww

where B(¢,) denotes a multivariate Beta function. We propose a
Gibbs sampler for posterior computation, which enables parame-
ter estimation and variable selection simultaneously. The Gibbs
sampler is computationally efficient and mixes rapidly. We first
specified the hyperparameters h,, o;, vy, a,, -+, a, at appropriate val-
ues. Starting from the initiation step, the Gibbs sampler for the
model (3) and (7) proceeds as follows:

1. Update B, according to its full conditional distribution

N (e ;,)
o (ximit) )

2. Update 6, from its full conditional distribution N, 4y (ﬁ; 5 g ), where

P(Bol-) ~ Xo(w - X"0),

-1

—~ * * =1 * *
by = (Xng +t24 ) Xg (W =XoBo = X()0(g)).

-1
- 2 * * *—1
S,=o0 (ngg+zg )

The design matrix X(g) is [Xl’ e Xy, X4, "';XQ]’ and the
regression coefficient vector 6, is (R 50,1, 0 ,0,).

3.Let N=n+q+py+voandn = X, By + X*6. Update

from

N 1
2|y~
p(a?|-) G<22

ﬁoﬁo

{Voao +|lw—nl?+ +0'(Z")” 10})

4. Independently sample Vo from its full conditional distribution

1) ~ 16(%2%%, 1),

16g)]
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S. Update 7, from its full conditional distribution, the generalized

inverse Gaussian distribution (giG), such as
. |991'|
p(rg|—) ~giG| qqg X ag—qg, 1,22 b0
— Pgj
6. Update o where ¢gj=1jg)./ T, such that

9. .
p(Tyi|-) ~ giG <ag -1,1,2 @)

7. Update a, from MN(1,p1/D, -+, P50/P), where P = Y2 h

and
dg

p=exp| (u— 1)2 log((bgj) + (qgul - 1) log(rg) —log50 ).
=1

As the DL prior does not give exactly zero coefficient value, an ad-
ditional step is needed to select relevant variables. We followed a
simple approach to choose important variables using k-means
clustering [22]. Two clusters of |6]'s can exist, where (a) one clus-
ter has nearly zero coefficient values while (b) another cluster has
relatively bigger absolute coefficients away from zero. The clusters
(a) and (b) can be considered as noise and signal, respectively. We
cluster |0's at each Markov chain Monte Carlo iteration using
k-means with k = 2 clusters. At each i-th iteration, the number of
important variables ; is set to be the smaller cluster size out of the
two clusters. Subsequently, the number of important variables is fi-
nally estimated by taking the mode from the whole Markov chain
Monte Carlo (MCMC) iterations, i.e., H = mode{h,}. The H larg-
est elements of the absolute values of posterior medians |6| are
identified as the important variables.

ADNI-1 data

To reveal SNPs associated with the time of conversion to AD from
MCI, we analyzed ADNI data obtained from the ADNI database
(https://adniloni.usc.edu). The ADNI was launched in 2003 as a
public-private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNTI has been to test whether
serial magnetic resonance imaging, positron emission tomography,
other biological markers, and clinical and neuropsychological as-
sessment can be combined to measure the progression of MCI
and early AD. The initial 5-year ADNI study resulted in the ADNI-
1 data.

We performed quality control (QC) steps on the raw genotype
data to ensure that only high-quality data were included in the final
analysis. QC procedures include (1) call rate check per subject and
per SNP marker, (2) gender check, (3) sibling pair identification,
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(4) the Hardy-Weinberg equilibrium test, (S) marker removal by
the minor allele frequency, and (6) population stratification. The
second line preprocessing steps include removal of SNPs with (1)
more than 5% missing values, (2) minor allele frequency smaller
than 5%, and (3) Hardy-Weinberg equilibrium p-value < 10°°. The
remaining missing genotype variables were imputed as the modal
value. After the QC procedures, 347 subjects and 494,564 SNPs
remained in the current study. The above procedures were carried
out in PLINK version 1.9. We also calculated the LD blocks to
form the SNP-sets and remove SNP-sets with a single SNP. Even-
tually, 421,823 SNPs were left in our analysis grouped into 16,084
SNP-sets.

We study the subjects diagnosed with MCI at the baseline visit.
If an MCI patient does not progress to AD within 48 months from
the baseline, we define the time of conversion of the patient as
"censored.” For non-censored cases, the conversion time is deter-
mined by the difference between the baseline and the time of visit
when the patient was diagnosed with AD.

Simulation data

‘We generated simulation data to examine the performance of the
BBVS in the AFT model. To convey the correlation structure of
SNP data in practice, our SNP data is simulated from the Hap-
map projects 2009 phase I1I data [35]. For each subject, we ran-
domly combined two haplotypes from the Centre d'étude du
polymorphisme humain population to form its genotypes and
used PLINK [36] to form SNP-sets by determining LD blocks.
Among the blocks that were >30, we randomly selected 2,000
SNP-sets in each block, which results in about 86,000 SNPs. After
removing those SNP data with duplicated columns, we have
about 45,000 SNPs in total.

We considered two cases: non-censored data and censored data.
In the non-censored case, the time to event outcome was generat-
ed from the model (1), where 7,=1,j=1,++-,10and 7/ =0,j'= 11,
+++,2,000. Within the 10 relevant blocks, we randomly selected 10
SNPs and assumed an additive model. The additive model as-
sumes that a uniform, linear increase in risk for each copy of the
minor allele exists. The corresponding non-zero regression coeffi-
cients were generated from N(~1, 0.5), which mimics the situation
wherein a single copy of the minor allele decreases the time to
event in relation to major allele. In the censored case, the censored
event times were independently generated from a uniform distri-
bution from 0 to c¢*. The value of ¢* was set to achieve a desired
censoring rate. We replicated the simulation 50 times under the
same setting. We assumed the inclusion indicator y,~Beta
(10,190), which gives average 5% of inclusion probability to reflect
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prior information that the important signal is sparse in the GWAS.

Results and Discussion

ADNI-1 data analysis

We applied BBVS on the ADNI-1 data to reveal SNPs associated
with the time of conversion to AD from MCI. Other than the
whole SNPs data, we also included demographic and clinical char-
acteristics measured at the baseline, such as gender, age, handed-
ness, marital status, education length, retirement, and Alzheimer’s
Disease Assessment Scale-Cognitive Subscale (ADAS-Cog)
score. The first S principal components of the SNP were included
to adjust for population stratification in the model [37]. The vari-
able selection was only performed on the SNP data.

We determined the threshold a to control the average Bayesian
FDR [34] and consider any group whose posterior inclusion prob-
ability is greater than that of a. In the ADNI data, the threshold is
calculated by 0.941 (Fig. 1). In total, 19 SNP-sets were detected as
important groups and 106 SNPs were identified by the ele-
mentwise-level selection. Fig. 2. shows the estimated coefficient
values for 795 SNPs included in the 19 SNP-sets. We colored 106
SNPs selected in the element level in red.

Supplementary Figs. 1-3 show trace plots of the regression coef-
ficients 6, ,, 0, ,, and 0, ; of the first selected SNP-set for 5,000 itera-
tions of the MCMC algorithm. They show fast convergence of the
algorithm, indicating its good mixing properties.

We summarized the variable selection results of BBVS to present
which genes are involved in Table 1. Among them, four genes have
been reported in other studies to be related to AD directly or indi-
rectly. Dipeptidyl-peptidase 10 (DPP10) is known to modulate
the electrophysiological properties, cell-surface expression, and
subcellular localization of voltage-gated potassium channels [38].
Chen et al. [39] demonstrated that aggregation of DPP10 was re-
lated to neurodegenerative disorders including AD, diffuse Lewy
body disease, and fronto-temporal dementia. In addition, DPP10
had robust reactivity within neurofibrillary tangles and plaque-as-
sociated dystrophic neurites in AD brains, which suggested that it
is involved in the pathology of AD [40]. All the findings indicate
that DPP10 is associated with a risk to develop AD in a direct or
indirect manner. THSD7B has been reported to be associated with
age-related cognitive decline based on repeated measures of 17
cognitive tests [41]. In addition, several linkage mappings have
identified VPS26A to be associated with AD [42]. Sidekick cell
adhesion molecule 1 was reported as a susceptibility gene for hy-
pertension in Japanese individuals [43], where hypertension mod-
erately increased risk of AD [44].
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Fig. 1. Posterior inclusion probabilities of 16,106 SNP-sets. Our proposed method identified 19 important SNP-sets after Bayesian FDR
correction. The solid line shows the FDR criteria, 0.941 in this data. SNP, single nucleotide polymorphism; FDR, false discovery rate.
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Fig. 2. Estimated coefficient values for 795 SNPs included in the 19 SNP-sets. We colored 106 SNPs selected in the element level in red.
SNP, single nucleotide polymorphism.
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Table 1. LD blocks and genes detected by BBVS

Chr Begin (bp) End (bp) No. of SNPs No. of selected Genes

2 50596 50665 70 13 DPP10

2 53530 53576 47 6 THSD7B

4 104778 104785 8 2 ATP8A1

4 117728 117780 53 4 FREM3, LOC101927636, GYPA
5 135218 135255 38 3 -

6 154825 154859 35 5 -

6 166701 166774 74 7 -

7 181879 181955 77 7 SDK1

7 197664 197675 12 1 -

8 216741 216762 22 2 PREX2

8 224172 224250 79 1 TNFRSF11B, COLEC10

8 228413 228427 15 2 TRAPPC9

10 261007 261038 32 4 SRGN, VPS26A, SUPV3L1, HKDC1
12 294754 294763 10 0 CLEC2A, KLRF2

14 332351 332416 66 12 HEATR5A, DTD2, NUBPL

14 334919 334956 38 7 -

19 394149 394164 16 1 CPAMDS, HAUSS, MY09B

20 399491 399513 23 5 -

22 22468984 22671741 80 14 VPREB1,BMS1P20

LD, linkage disequilibrium; BBVS, Bayesian bi-level variable selection; SNP, single nucleotide polymorphism.
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Fig. 3. A Manhattan plot with -log10(p-value) for the classical genome-wide association study. The solid and dotted lines show the 5 x 10°®

significance level and the 1 x 107 significance level, respectively.
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For comparison purposes, we conducted two different types of
GWASs: (1) a simple GWAS, multiple testing on each SNP and
(2) kernel-machine SNP-set GWAS with the linear kernel [19].
Fig. 3. shows a Manhattan plot with ~log 10(p-value) for the sim-
ple GWAS. The solid and dotted lines represent the genome-wide
significance level and the suggestive significance level, respectively.
Our study identified 9 SNPs at the 1 x 10~ suggestive significance
level, where none of them had been reported in previous GWASs.
Supplementary Table 1 shows the p-values of 106 SNP selected by
the element-wise variable selection of the proposed method. None
of them were significant at the suggestive significance level. For the
kernel-machine method, we considered three types of kernel func-
tions such as the linear kernel, the identical by state (IBS) kernel,
and the quadratic kernel. Table 2 shows the SNP-sets selected by
the kernel-machine method at the S x 10 significance level. The
selected SNP-sets vary with the type of kernel. The linear kernel,
the IBS kernel, and the quadratic kernel selected S, 8, and 6 SNP-
sets, respectively. Two genes, calmodulin-binding transcription ac-
tivator 1 (CAMTAI) and RBFOX1, were related to Alzheimer’s
disease. The linear kernel selected an SNP set located within
CAMTAI. Huentelman et al. [45] identified SNPs within the
CAMTALI gene that were significantly related to memory perfor-
mance and memory-related regions on the human brain, which
could be considered potential biomarkers of AD. RBFOXI was

identified under the quadratic kernel function. Hooli et al. [46] re-
ported that the gene co-segregates with disease status within ear-
ly-onset familial AD and early or mixed-onset AD families. There
were no overlapped SNPs among the three methods.

Simulation study

As the AFT model for non-censored data is the log-normal regres-
sion model, we can compare the performance of variable selection
with other variable selection methods implemented based on the
typical regression models. For competing methods, we considered
the group Lasso (grLasso) [47], the group MCP(grMCP) [48],
the group bridge (gBridge) [49], the group exponential lasso (gel)
[50], the composite MCP (cMCP) [51] penaltues. The cMCP,
gel, and gBridge penalties carry out bi-level selection, meaning that
they carry out variable selection at the group level and at the level
of individual covariates. The grLasso, grMCP, and grSCAD penal-
ties carry out variable selection only at the group level, meaning
that within a group, coefficients will either all be zero or all non-ze-
ro. We used Bayesian Information Criteria to select the tuning pa-
rameter value for each method.

We consider the following performance measurements: true
positive rate (TPR or sensitivity), true negative rate (TNR or spec-
ificity), positive predictive value (PPV), and negative predictive
value (NPV). They are defined as follows.

Table 2. LD blocks and the corresponding SNPs detected by the kernel-machine method

p-value
chr SNP Gene Linear IBS Quadratic
1 rs12128469, rs12402763, rs7543711, rs12563394, rs2301461, rs2301462 CAMTA1 5.00e-09 1.00e-04 6.00e-04
2 rs6545731, rs10169309 5.00e-09 2.00e-04 5.00e-09
2 152576778, rs880427 FHL2 4.00e-04 5.00e-09 2.10e-03
3 rs9288812, rs10511245, rs2053627 5.00e-09 3.00e-04 6.00e-04
3 rs6796883, rs293779 CPNE9 5.00e-04 5.00e-09 5.00e-03
3 rs307560, rs307558 SYN2 2.00e-04 5.00e-09 1.10e-03
3 rs6768031, rs1033222, rs1991443, rs1991442, rs1427840, rs11922896, rs6439279, NEK11 2.00e-04 5.00e-09 1.10e-03
rs748155, rs17275526, rs755568, rs1863916

rs6888634, rs2577531 5.00e-09 5.00e-09 2.00e-04

rs6475646, rs10733377 2.00e-04 4.00e-04 5.00e-09
13 rs11164144, rs944899 5.00e-09 1.00e-04 1.00e-04
13 rs9508716, rs1275190, rs1275191, rs9508717, rs1314940 LINCo0426 5.00e-04 1.00e-03 5.00e-09
13 rs3764109, rs9530253 KLF12 2.00e-04 5.00e-09 4.00e-04
14 rs11850328, rs174994, rs8014403 8.00e-04 4.00e-04 5.00e-09
16 rs12149339, rs12933074, rs12934725, rs11861289 RBFOX1 2.00e-04 5.00e-09 5.00e-09
17 rs1990185, rs17772608, rs11077582, rs12951391, rs978425, rs16977009, rs12941303, AC003051.1 8.00e-04 5.00e-09 1.94e-02

rs2158917, rs12941651, rs7213040, rs16977023, rs12709255, rs17767678, rs7214582

21 rs2831525, rs6516819 L0C101927973  3.00e-04 7.00e-04 5.00e-09
LD, linkage disequilibrium; SNP, single nucleotide polymorphism; IBS, identical by state.
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Table 3. Group-wise variable selection performance of BBVS and other competing methods

TPR TNR PPV NPV
Group-level BBVS 1.000 (0.000) 1.000 (0.000) 0.996 (0.003) 1.000 (0.000)
gBridge 0.986 (0.005) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
gel 0.980 (0.007) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
grMCP 0.998 (0.002) 1.000 (0.000) 0.972 (0.009) 1.000 (0.000)
grSCAD 1.000 (0.000) 1.000 (0.000) 0.472 (0.007) 1.000 (0.000)
grLASSO 1.000 (0.000) 0.990 (0.000) 0.348 (0.007) 1.000 (0.000)
cMCP 1.000 (0.000) 0.963 (0.002) 0.144 (0.011) 1.000 (0.000)
Element-level BBVS 0.686 (0.012) 0.999 (0.000) 0.616 (0.009) 1.000 (0.000)
gBridge 0.643 (0.011) 0.999 (0.000) 0.503 (0.008) 1.000 (0.000)
gel 0.651 (0.012) 0.999 (0.000) 0.441 (0.009) 1.000 (0.000)
grMCP 0.306 (0.009) 0.998 (0.000) 0.165 (0.009) 0.999 (0.000)

BBVS, Bayesian bi-level variable selection; TPR, true positive rate; TNR, true negative rate; PPV, positive predictive value; NPV, negative predictive value.

TPR—E :rNR—ﬂ PPV= P NPV= IN
“ 10’ 71990’ " TP+FP’ " TN+FN

where the TP and TN are the number of correctly identified signif-
icant variables and the number of correctly rejected non-signifi-
cant variables, respectively. The FP and FN denote the number of
identified non-significant variables and the number of rejected sig-
nificant variables, respectively. Under the true model, TP = 10, TN
= 1990, and FP = FN = 0, which implies that all the four rates are
equal to one.

Table 3 shows the group-level and element-level variable selec-
tion results for the non-censored case. The average values of the
performance measurements are presented with Monte Carlo stan-
dard errors in the parenthesis. Our method achieves the highest
values of all the criteria, TPR, TNR, NPV, and PPV compared with
other group penalty methods by removing the irrelevant groups
consistently and selecting important groups very well. As the
group penalties with only group-level selection especially grSCAD,
grLasso tend to select groups more generously, they select import-
ant groups perfectly while the numbers of true positive cases are
much bigger than other methods. The bi-level selection penalties,
gBridge, and gel show comparative performance to our proposed
method. In terms of the element-wise variable selection, our meth-
od yields the highest values of all the criteria, TPR, TNR, NPV, and
PPV compared with other group penalty methods enabling bi-lev-
el selection. As the important signals are sparse, all the bi-level
methods perform very well in terms of removing irrelevant signals.

The BBVS also shows satisfactory performance in terms of se-
lecting important variables in the censored case. The average val-
ues of TPR, TNR, PPV, and NPV for the group-level selection
from the 50 repetition of the simulation are 0.970, 1.000, 1.000,
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and 1. The corresponding Monte Carlo standard errors are 0.009,
0.000, 0.000, and 0.000. The average values of TPR, TNR, PPV,
and NPV for the element-level selection are 0.634, 0.999, 0.589,
and 1.000. The corresponding Monte Carlo standard errors are
0.012, 0.000, 0.011, and 0.000. Compared with non-censored cas-
es, the performance of BBVS is satisfactory in the censored case as

well.

Conclusion

The BBVS was developed to enable bi-level variable selection as
incorporating grouping information within covariates in the
high-dimensional setting. In the context of GWAS, our method
addressed the challenging issues by making use of natural grouping
information of SNPs in the group-level variable selection step. In
addition, DL priors were adapted to reflect the grouping informa-
tion in the element-wise variable selection.

The simulation studies showed that our proposed method out-
performed other bi-level and group-level variable selection meth-
ods in the GWAS setting for a non-censored case. We applied
BBVS on the ADNI-1 data to identify relevant SNP-sets associated
with the time to develop AD within MCI patients. We identified
106 informative SNPs located within 10 genes, where four genes
were directly and indirectly related to AD, while the simple form of
GWAS only detected 3 SNPs that had not been reported in the lit-
erature. We need to analyze other AD data sets to see if the impli-
cated genes are reproducible when we used different subjects in
the future study. We also need to conduct a simulation study to
compare the variable selection performance of BBVS with other
survival models that enable variable selection for the high-dimen-

sional data.
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