DOI QR코드

DOI QR Code

An Empirical Study on Development of Traffic Safety Facilities for Safe Autonomous Vehicle Operation in Construction Areas

자율주행자동차의 공사구간 안전주행 지원을 위한 교통안전시설물 개발 실증 연구

  • Jiyoon Kim (Department of Highway & Transportation Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Jisoo Kim (Department of Highway & Transportation Research, Korea Institute of Civil Engineering and Building Technology)
  • 김지윤 (한국건설기술연구원 도로교통연구본부 ) ;
  • 김지수 (한국건설기술연구원 도로교통연구본부)
  • Received : 2023.09.01
  • Accepted : 2023.09.14
  • Published : 2023.10.31

Abstract

Improving the detection performance of facilities corresponding to the sensors of autonomous vehicles helps driving safety. In the road and transportation field, research is being conducted to improve the detection performance of sensors by road infrastructure or facilities. As part of this on the development of autonomous driving support infrastructure, the shape of traffic cones and drums to ensure sufficient LiDAR detection performance even rainy conditions and maintain the line-of-sight guidance function in construction zones improvement effect. The principle was to increase reflection performance and ensure no significant difference in shape from existing facilities. Traffic cones were manufactured in square pyramid shapes instead of cones, and drums were manufactured in hexagonal and octagonal pillar shapes instead of cylinders. LiDAR detection data for the facility was confirmed on a clear day and with 20 mm/h and 40 mm/h rainfall. The detection performance of the square pyramid-shaped traffic cone and octagonal column-shaped drum was to the existing facility. On the other hand, deviations occurred due to repeated measurements, and significance could not be confirmed through statistical analysis. By reflecting these results, future studies will seek a form in which data can be obtained uniformly despite the diversity of measurement environments.

자율주행자동차의 센서에 대응하는 시설물의 검지성능을 향상시키는 것은 주행안전성을 향상시키는 데에 도움이 된다. 도로·교통 분야에서는 이를 위하여 도로 인프라 또는 시설물의 개선을 통해 센서에 대한 검지성능을 향상시키기 위한 연구를 수행하고 있다. 본 연구는 이러한 자율주행 지원 인프라 개발 연구의 일환으로 강우 상황에서도 충분히 LiDAR의 검지성능이 확보되어 공사구간에서 시선유도 기능을 유지할 수 있도록 교통콘과 드럼의 형상을 변형하여 이의 개선효과를 실증 실험으로 확인하였다. 개선의 원리는 반사 성능이 증대되며 기존의 시설물과 형상적으로 크게 차이가 나지 않도록 교통콘은 원뿔형 대신 사각뿔형으로, 드럼은 원기둥형 대신 6각기둥형과 8각기둥형으로 각각 제작하였다. 맑은 날과 강우 20 mm/h, 40 mm/h 상황에서 시설물에 대한 LiDAR 검지 데이터를 확인하였으며, 사각뿔형 교통콘과 8각기둥형 드럼은 기존 시설물에 비해 검지성능이 향상되었음을 확인하였다. 다만, 반복 측정에 따른 편차가 발생하였고, 통계적 해석으로는 유의미성을 확인하지 못한 것이 본 연구 결과의 한계이며, 이 결과를 반영하여 향후 연구에서는 측정환경의 다양성에도 균일하게 데이터가 취득될 수 있는 형태로 개선할 필요가 있다.

Keywords

Acknowledgement

본 연구는 한국ITS학회 2023년도 춘계학술대회 우수논문상으로 선정된 발표논문을 토대로 하여 작성하였으며, 한국건설기술연구원의 주요사업(미래교통 스마트 인프라 핵심기술개발)의 지원을 받아 수행하였습니다.

References

  1. Goberville, N., El-Yabroudi, M., Omwanas, M., Rojas, J., Meyer, R., Asher, Z. and Abdel-Qader, I.(2020), "Analysis of LiDAR and Camera Data in Real-World Weather Conditions for Autonomous Vehicle Operations", SAE(Society of Automotive Engineers) International Journal of Advances and Current Practices in Mobility, SAE International, Warrendale, Pennsylvania, USA, vol. 2, no. 5, pp.2428-2434.
  2. Goodin, C., Carruth, D., Doude, M. and Hudson, C.(2019), "Predicting the Influence of Rain on LiDAR in ADAS", Electronics, vol. 8, no. 1, p.89. doi: 10.3390/electronics8010089
  3. Im, L., Choi, K., Jeong, J. and Lee, I.(2015), "Development of a General Purpose Simulator for Evaluation of Vehicle LiDAR Sensors and its Application", Korean Journal of Remote Sensing, vol. 31, no. 3, pp.267-279. https://doi.org/10.7780/KJRS.2015.31.3.6
  4. IRS(Informations Research Service) Global(2020), Flying Car.Autonomous Vehicle, pp.386-394.
  5. Jeon, H. and Kim, J.(2021), "Analysis on Handicaps of Automated Vehicle and Their Causes using IPA and FGI", Journal of Korea Institute of Intelligent Transport Systems, The Korea Institute of Intelligent Transport Systems, vol. 20, no. 3, pp.34-46. https://doi.org/10.12815/kits.2021.20.3.34
  6. KICT(Korea Institute of Civil Engineering and Building Technology)(2021), Improvement Road Infrastructures to Strengthen Driving Safety of Automated Driving Car, the Second report, South Korea.
  7. Kim, J. Y. and Kim, J.(2022), "Empirical Research on Improving Traffic Cone Considering LiDAR's Characteristics", Journal of Korea Institute of Intelligent Transport Systems, vol. 21, no. 5, pp.253-273. https://doi.org/10.12815/kits.2022.21.5.253
  8. Kim, J. Y. and Park, B.(2022), "A Study of LiDAR's Detection Performance Degradation in Fog and Rain Climate", Journal of Korea Institute Intelligent Transportation Systems, vol. 21, no.2, pp.101-115. https://doi.org/10.12815/kits.2022.21.2.101
  9. Kim, J., Park, B., Roh, C. and Kim, Y.(2021), "Performance of Mobile LiDAR in the Real Road Driving Conditions", Sensors, vol. 21, no. 22, p.7461. doi: 10.3390/s2201010
  10. Kim, W. K.(2020), "Main Contents and Future Plans of the Automated Driving Technology Development Innovation Project", Monthly KOTI Magazine on Transportation, vol. 272, pp.27-35.
  11. KPMG International(2020), 2020 Autonomous Vehicle Readiness Index, p.1.
  12. Kutila, M., Pyykonen, P., Ritter, W., Sawade, O. and Schaufele, B.(2016), "Automative LiDAR Sensor Development Scenarios for Harsh Weather Conditions", IEEE 19th International Conference on Intelligent Transportation Systems(ITSC), Rio De Janeiro, Brazil, IEEE, Newyork, pp.265-270.
  13. Lambert, J., Carballo, A., Cano, A. M., Narksri, P., Wong, D., Takeuchi, E. and Takeda, K.(2020), "Performance Analysis of 10 Models of 3D LiDARs for Automated Driving", IEEE Access, vol. 8, pp.131699-131722. doi: 10.1109/ACCESS.2020.3009680
  14. Lee, H. and Seo, S. W.(2015), "Stable and Precise Multi-Lane Detection Algorithm Using Lidar in Challenging Highway Scenario", Journal of the Institute of Electronics and Information Engineers, vol. 52, no. 12, pp.158-164. https://doi.org/10.5573/ieie.2015.52.12.158
  15. Maeil Premium(2023), [Planning] Hyundai Motor Group begins mass production of Level 3 'HDP' for the first time this year...takes the lead in the market, https://www.m-i.kr/news/articleView.html?idxno=1010952, 2023.06.36.
  16. Mercedes-Benz Group(2023), As world's first automotive company, Certification for SAE Level 3 system for U.S. market, https://group.mercedes-benz.com/innovation/product-innovation/autonomous-driving/drive-pilot-nevada.html, 2023.03.16.
  17. Montalban, K., Reymann, C., Atchuthan, D., Dupouy, P. E., Riviere, N. and Lacroix, S.(2021), "A Quantitative Analysis of Point Clouds from Automotive Lidars Exposed to Artificial Rain and Fog", Atmosphere, vol. 12, no. 6, p.738.
  18. Park, B. and Kim, J. Y.(2021), " A Study of LiDAR's Performance Change by Road Sign's Color and Climate", Journal of Korea Institute Intelligent Transportation System, vol. 20, no. 6, pp.228-241. https://doi.org/10.12815/kits.2021.20.6.228
  19. Park, B.(2022), "Method of improvements for autonomous vehicle road-traffic facilities using LiDAR", Proceedings of the KITS International Conference 2022, Seogwuipo, Jeju, Korea, pp.15-18.
  20. Park, J., Lee, J., Lee, S., Bak, S. and Kim, Y.(2023), "An Automotive LiDAR Performance Test Method in Dynamic Driving Conditions", Sensors, vol. 23, no. 8, p.3892. doi: 10.3390/s23083892
  21. Robosense(2019), RS-LiDAR-32 Brochure, China.
  22. Roh, C. G. and Im, I. J.(2020), "A review on Handcap Sections and Situations to Improve Driving Safety of Automated Vehicles", Sustainability MDPI, vol. 12, 5509. doi: 10.3390/su12145509
  23. SAE(Society of Automotive Engineers) International(2018), Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-road Motor Vehicles, J3016, SAE International, Warrendale, Pennsylvania, USA.
  24. Schoettle, B.(2017), Sensor Fusion: A Comparison of Sensing Capabilities of Human Drivers and Highly Automated Vehicles, SWT-2017-12, University of Michigan, Transportation Research Institute, Ann Arbor, USA.
  25. Tang, L., Shi, Y., He, Q., Sadek, A. W. and Ciao, C.(2020), "Performance Test of Autonomous Vehicle Lidar Sensors Under Different Weather Conditions", Transportation Research Record, vol. 2674, no. 1, pp.319-329. https://doi.org/10.1177/0361198120901681