DOI QR코드

DOI QR Code

A study on spatial onset characteristics of flash drought based on GLDAS evaporative stress in the Korean Peninsula

GLDAS 증발 스트레스 기반 한반도 돌발가뭄의 공간적 발생 특성 연구

  • Kang, Minsun (Department of Global Smart City, Sungkyunkwan University) ;
  • Jeong, Jaehwan (Center for Built Environment, Sungkyunkwan University) ;
  • Lee, Seulchan (Department of Water Resources, Sungkyunkwan University) ;
  • Choi, Minha (Department of Water Resources, Sungkyunkwan University)
  • 강민선 (성균관대학교 글로벌스마트시티융합전공) ;
  • 정재환 (성균관대학교 건설환경연구소) ;
  • 이슬찬 (성균관대학교 수자원전문대학원 수자원학과) ;
  • 최민하 (성균관대학교 수자원전문대학원 수자원학과)
  • Received : 2023.09.02
  • Accepted : 2023.10.04
  • Published : 2023.10.31

Abstract

Flash drought (FD), characterized by the rapid onset and intensification, can significantly impact ecosystems and induce immediate water stress. A more comprehensive understanding of the causes and characteristics of FD events is required to enhance drought monitoring. Therefore, we investigated the FD events took place over the Korean peninsula using Global Land Data Assimilation System (GLDAS) data from 2012 to 2022. We first detected FD events using the stress-based method (Standardized Evaporative Stress Ratio, SESR), and analyzed the frequency and duration of FDs. The FD events were classified into three cases based on the variations in Actual Evapotranspiration (AET) and potential Evapotranspiration (PET), and spatially analyzed. Results revealed that there are regional disparities in frequency and duration of FDs, with a mean frequency of 6.4 and duration of 31 days. When classified into Case 1 (normal condition), Case 2 (AET-driven), and Case 3 (PET-driven), we found that Case 2 FDs emerged approximately 1.5 times more frequently than those driven by PET (Case 3) across the Korean peninsula. Case 2 FDs were found to be induced under water-limited conditions, and led both AET and PET to be decreased. Conversely, Case 3 FDs occurred under energy-limited conditions, with increase in both. Case 2 FDs predominantly affected the northwestern and central-southern agricultural regions, while Case 3 occurred in the eastern region, characterized by forested land cover. These findings offers insights into our understanding of FDs over the Korean peninsula, considering climate factors, land cover, and water availability.

돌발가뭄(Flash drought, FD)은 기존 가뭄과는 달리 급작스러운 발생이 대표적인 특징으로, 즉각적인 수분 스트레스를 유발하여 생태계에 주요한 영향을 미친다. 보다 효과적인 돌발가뭄의 모니터링을 위해서는 돌발가뭄의 특징과 원인에 대한 보다 종합적인 이해가 필요하다. 이에, 본 연구에서는 Global Land Data Assimilation System (GLDAS) 자료를 사용하여 2012년부터 2022년 사이 한반도 전역에서 발생한 돌발가뭄에 대해 분석하고자 하였다. 스트레스 기반 탐지 기법인 표준 증발 스트레스 비율(Standardized Evaporative Stress Ratio, SESR)의 변화를 바탕으로 돌발가뭄을 탐지하였으며, 발생 빈도와 기간에 대해 분석하였다. 또한, 탐지된 돌발가뭄 사건들을 실제 증발산(Actual Evapotranspiration, AET)과 잠재 증발산(Potential Evapotranspiration, PET)의 변화를 기반으로 세 가지 케이스로 분류하였으며, 각 케이스 별 발생 특성 및 공간 분포에 대해 분석하였다. 그 결과, 돌발가뭄의 발생 빈도와 기간에 지역적인 편차가 있는 것을 확인하였으며, 평균 빈도는 6.4회, 평균 발생 기간은 31일로 나타났다. 일반적인 돌발가뭄인 Case 1, AET의 감소가 주 원인이 되어 발생한 Case 2, PET의 증가에 의해 발생한 Case 3으로 돌발가뭄 사건들을 분류하였을 때, 한반도에서는 Case 1 돌발가뭄이 1,448건으로 가장 많이 발생했으며, Case 2 돌발가뭄이 Case 3 돌발가뭄보다 약 1.5배 더 많이 일어난 것을 확인할 수 있었다. Case 2 돌발가뭄은 수분 제한 조건(water-limited condition)에서 발생하여 AET와 PET가 모두 감소하는 결과로 이어졌으며, Case 3 돌발가뭄은 에너지 제한 조건(energy-limited condition)에서 발생한 이후 AET와 PET가 모두 증가하였다. Case 2 돌발가뭄은 주로 북서부와 중남부에 위치한 농경지에 영향을 주었으며, Case 3 돌발가뭄은 산지에 해당하는 동부에서 집중적으로 발생하였다. 본 연구의 결과들은 기후 요소, 토지피복 및 수분 가용성을 고려한, 돌발가뭄에 대한 이해를 돕고, 보다 효과적인 가뭄 대응 방안 수립에 기여할 수 있다.

Keywords

Acknowledgement

본 연구는 교육부 및 한국연구재단의 4단계 두뇌한국21 사업(4단계 BK21 사업)으로 지원된 연구입니다. 이 논문은 국토교통부의 스마트시티 혁신인재육성사업으로 지원되었습니다. 본 결과물은 환경부의 재원으로 한국환경산업기술원의 가뭄대응 물관리 혁신기술 개발사업의 지원을 받아 연구되었습니다(202305020001).

References

  1. Basara, J.B., Christian, J.I., Wakefield, R.A., Otkin, J.A., Hunt, E.H., and Brown, D.P. (2019). "The evolution, propagation, and spread of flash drought in the Central United States during 2012." Environmental Research Letters, Vol. 14, No. 8, 084025.
  2. Benestad, R.E., Lussana, C., Lutz, J., Dobler, A., Landgren, O., Haugen, J.E., Mezghani, A., Casati, B., and Parding, K.M. (2022). "Global hydro-climatological indicators and changes in the global hydrological cycle and rainfall patterns." PLoS Climate, Vol. 1, No. 5, e0000029.
  3. Christian, J.I., Basara, J.B., Otkin, J.A., Hunt, E.D., Wakefield, R.A., Flanagan, P.X., and Xiao, X. (2019). "A methodology for flash drought identification: Application of flash drought frequency across the United States." Journal of Hydrometeorology, Vol. 20, No. 5, pp. 833-846. https://doi.org/10.1175/JHM-D-18-0198.1
  4. Dai, A. (2011). "Drought under global warming: A review." Wiley Interdisciplinary Reviews: Climate Change, Vol. 2, No. 1, pp. 45-65. https://doi.org/10.1002/wcc.81
  5. DeAngelis, A.M., Wang, H., Koster, R.D., Schubert, S.D., Chang, Y., and Marshak, J. (2020). "Prediction skill of the 2012 US great plains flash drought in subseasonal experiment (SubX) models." Journal of Climate, Vol. 33, No. 14, pp. 6229-6253. https://doi.org/10.1175/JCLI-D-19-0863.1
  6. Ha, K.J., Moon, S., Timmermann, A., and Kim, D. (2020). "Future changes of summer monsoon characteristics and evaporative demand over Asia in CMIP6 simulations." Geophysical Research Letters, Vol. 47, No. 8, e2020GL087492.
  7. Hobbins, M.T., Wood, A., McEvoy, D.J., Huntington, J.L., Morton, C., Anderson, M., and Hain, C. (2016). "The evaporative demand drought index. Part I: Linking drought evolution to variations in evaporative demand." Journal of Hydrometeorology, Vol. 17, No. 6, pp. 1745-1761. https://doi.org/10.1175/JHM-D-15-0121.1
  8. Hunt, E., Femia, F., Werrell, C., Christian, J.I., Otkin, J.A.. Basara, J., Anderson, M., White, T., Hain, C., and Randall, R. (2021). "Agricultural and food security impacts from the 2010 Russia flash drought." Weather and Climate Extremes, Vol. 34, 100383.
  9. Kang, M., Hao, Y., and Choi, M. (2023). "The effects of flash drought on the terrestrial ecosystem in Korea." Journal of Hydrology, Vol. 624, 129874.
  10. Lee, H.-J., Nam, W.-H., Yoon, D.-H., Svoboda, M.D., Wardlow, B.D., and Otkin, J.A. (2022a). "Flash drought mechanism and characteristics in South Korea." Journal of the Korean Society of Hazard Mitigation, Vol. 22, No. 3, pp. 25-35. https://doi.org/10.9798/KOSHAM.2022.22.3.25
  11. Lee, J.-W., Hong, E.-M., Kim, J.-U., Jang, W.-J., Jung, C.-G., and Kim, S.-J. (2022b). "Evaluation of agricultural drought in South Korea using socio-economic drought information." International Journal of Disaster Risk Reduction, Vol. 74, 102936.
  12. Lee, Y., Im, B., Kim, K., and Rhee, K. (2020). "Adequacy evaluation of the GLDAS and GLEAM evapotranspiration by eddy covariance method." Journal of Korea Water Resources Association, Vol. 53, No. 10, pp. 889-902. https://doi.org/10.3741/JKWRA.2020.53.10.889
  13. Liu, X., Sun, G., Mitra, B., Noormets, A., Gavazzi, M.J., Domec, J.-C., Hallema, D.W., Li, J., Fang, Y., King, J.S., and McNulty, S.G. (2018). "Drought and thinning have limited impacts on evapotranspiration in a managed pine plantation on the southeastern United States coastal plain." Agricultural and Forest Meteorology, Vol. 262, pp. 14-23. doi: 10.1016/j.agrformet.2018.06.025.
  14. Liu, Y., Zhu, Y., Zhang, L., Ren, L., Yuan, F., Yang, X., and Jiang, S. (2020). "Flash droughts characterization over China: From a perspective of the rapid intensification rate." Science of the Total Environment, Vol. 704, 135373.
  15. Mahto, S.S., and Mishra, V. (2020). "Dominance of summer monsoon flash droughts in India." Environmental Research Letters, Vol. 15, No. 10, 104061.
  16. Mahto, S.S., and Mishra, V. (2023). "Increasing risk of simultaneous occurrence of flash drought in major global croplands." Environmental Research Letters, Vol. 18, No. 4, 044044.
  17. Mo, K.C., and Lettenmaier, D.P. (2015). "Heat wave flash droughts in decline." Geophysical Research Letters, Vol. 42, No. 8, pp. 2823-2829. https://doi.org/10.1002/2015GL064018
  18. Mukherjee, S., and Mishra, A.K. (2022). "A multivariate flash drought indicator for identifying global hotspots and associated climate controls." Geophysical Research Letters, Vol. 49, No. 2, e2021GL096804.
  19. Nguyen, H., Wheeler, M.C., Otkin, J.A., Cowan, T., Frost, A., and Stone, R. (2019). "Using the evaporative stress index to monitor flash drought in Australia." Environmental Research Letters, Vol. 14, No. 6, 064016.
  20. Otkin, J.A., Anderson, M.C., Hain, C., Mladenova, I.E., Basara, J.B., and Svoboda, M. (2013). "Examining rapid onset drought development using the thermal infrared - based evaporative stress index. Journal of Hydrometeorology, Vol. 14, No. 4, pp. 1057-1074. doi: 10.1175/JHM-D-12-0144.1.
  21. Otkin, J.A., Svoboda, M., Hunt, E.D., Ford, T.W., Anderson, M.C., Hain, C., and Basara, J.B. (2018). "Flash droughts: A review and assessment of the challenges imposed by rapid-onset droughts in the United States." Bulletin of the American Meteorological Society, Vol. 99, No. 5, pp. 911-919. https://doi.org/10.1175/BAMS-D-17-0149.1
  22. Pendergrass, A.G., Meehl, G.A., Pulwarty, R., Hobbins, M., Hoell, A., AghaKouchak, A., Bonfils, C.J., Gallant, A.J., Hoerling, M., and Hoffmann, D. (2020). "Flash droughts present a new challenge for subseasonal-to-seasonal prediction." Nature Climate Change, Vol. 10, No. 3, pp. 191-199. https://doi.org/10.1038/s41558-020-0709-0
  23. Qing, Y., Wang, S., Ancell, B.C., and Yang, Z.-L. (2022). "Accelerating flash droughts induced by the joint influence of soil moisture depletion and atmospheric aridity." Nature Communications, Vol. 13, No. 1, 1139.
  24. Rodell, M., Houser, P., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., and Bosilovich, M. (2004). "The global land data assimilation system." Bulletin of the American Meteorological Society, Vol. 85, No. 3, pp. 381-394. https://doi.org/10.1175/BAMS-85-3-381
  25. Trenberth, K.E., Dai, A., Van Der Schrier, G., Jones, P.D., Barichivich, J., Briffa, K.R., and Sheffield, J. (2014). "Global warming and changes in drought." Nature Climate Change, Vol. 4, No. 1, pp. 17-22. https://doi.org/10.1038/nclimate2067
  26. Wang, C., Chen, J., Gu, L., Wu, G., Tong, S., Xiong, L., and Xu, C.-Y. (2023). "A pathway analysis method for quantifying the contributions of precipitation and potential evapotranspiration anomalies to soil moisture drought." Journal of Hydrology, Vol. 621, 129570. doi: 10.1016/j.jhydrol.2023.129570.
  27. Yuan, X., Wang, L., and Wood, E.F. (2018). "Anthropogenic intensification of southern African flash droughts as exemplified by the 2015/16 season." Bulletin of the American Meteorological Society, Vol. 99, No. 1, pp. S86-S90. https://doi.org/10.1175/BAMS-D-17-0077.1
  28. Yuan, X., Wang, L., Wu, P., Ji, P., Sheffield, J., and Zhang, M. (2019). "Anthropogenic shift towards higher risk of flash drought over China." Nature Communications, Vol. 10, No. 1, 4661. doi: 10.1038/s41467-019-12692-7
  29. Zhang, L., and Zhou, T. (2015). "Drought over East Asia: A review." Journal of Climate, Vol. 28, No. 8, pp. 3375-3399. https://doi.org/10.1175/JCLI-D-14-00259.1
  30. Zomer, R.J., Xu, J., and Trabucco, A. (2022). "Version 3 of the global aridity index and potential evapotranspiration database." Scientific Data, Vol. 9, No. 1, 409.