DOI QR코드

DOI QR Code

Investigation of design methods in calculating the load-carrying capacity of mortise-tenon joint of timber structure

  • Hafshah Salamah (Department of Architecture and Architectural Engineering, Seoul National University) ;
  • Seung Heon Lee (Department of Architecture and Architectural Engineering, Seoul National University) ;
  • Thomas H.-K. Kang (Department of Architecture and Architectural Engineering, Seoul National University)
  • Received : 2023.07.11
  • Accepted : 2023.09.25
  • Published : 2023.11.25

Abstract

This study compares two prominent design provisions, National Design Specification (NDS) and Eurocode 5, on load-carrying capacity calculations and failure analysis for mortise-tenon joints. Design procedures of double-shear connection from both provisions were used to calculate load-carrying capacity of mortise-tenon joints with eight different bolt sizes. From this calculation, the result was validated using finite element analysis and failure criteria models. Although both provisions share similar failure modes, their distinct calculation methods significantly influence the design load-carrying capacity values. Notably, Eurocode 5 predicts a 6% higher design load-carrying capacity for mortise-tenon joints with varying bolt diameters under horizontal loads and 14% higher under vertical loads compared to NDS. However, the results from failure criteria models indicate that NDS closely aligns with the actual load-carrying capacity. This indicates that Eurocode 5 presents a less conservative design and potentially requires fewer fasteners in the final timber connection design. This evaluation initiates the potential for the development of a wider range of timber connections, including mortise-tenon joints with wooden pegs.

Keywords

Acknowledgement

This research was supported by National Research Foundation of Korea grant (No. 2021-R1A5A1032433), and by Institute of Engineering Research at Seoul National University. The views expressed are those of the authors, and do not necessarily represent those of the sponsors.

References

  1. American Institute of Timber Construction (AITC) (2005), Timber Construction Manual, New Jersey, John Wiley & Sons, Hoboken, NJ, USA.
  2. American Wood Council (AWC) (2018), National Design Specification (NDS) for Wood Construction with Commentary, American Wood Council, Leesburg, VA, USA.
  3. Branco, J.M. and Descamps, T. (2015), "Analysis and strengthening of carpentry joints", Constr. Build. Mater., 97, 34-47. https://doi.org/10.1016/j.conbuildmat.2015.05.089.
  4. Breyer, D.E. (1993), Design of Wood Structures Third Edition, McGraw-Hill, New York, NY, USA.
  5. Chand, B., Kaushik, H.B. and Das, S. (2020), "Lateral load behavior of connections in Assam-type wooden houses in the Himalayan region of India", Constr. Build. Mater., 261, 119904. https://doi.org/10.1016/j.conbuildmat.2020.119904.
  6. CEN (2004), EN 1995-1-1, Eurocode 5: Design of Timber Structures, European Committee for Standardization, Brussels, Belgium.
  7. Chen, C.J., Lee, T.L. and Jeng, D.S. (2003), "Finite element modeling for the mechanical behavior of dowel type timber joints", Comput. Struct., 81, 2731-2738. https://doi.org/10.1016/S0045-7949(03)00338-9.
  8. Emile, C., Xiaobin, S., Yajie, W. and Kai, L. (2018), "Lateral performance of mortise-tenon jointed traditional timber frames with wood panel infill", Eng. Struct., 161, 223-230. https://doi.org/10.1016/j.engstruct.2018.02.022.
  9. Feio, A.O., Lourenco, P.B. and Machado, J.S. (2014), "Testing and modeling of a traditional timber mortise and tenon joint", Mater. Struct., 47, 213-225. https://doi.org/10.1617/s11527-013-0056-y.
  10. Fonseca, E.M.M., Liete, P.A.S., Silva, L.D.S., Silva, V.S.B. and Lopes, H.M. (2022), "Parametric study of three types of timber connections with metal fasteners using Eurocode 5", Appl. Sci., 12, 1701. https://doi.org/10.3390/app12031701.
  11. Geiser, M., Bergmann, M. and Follesa, M. (2021), "Influence of steel properties on the ductility of doweled timber connections", Constr. Build. Mater., 266, 121152. https://doi.org/10.1016/j.conbuildmat.2020.121152.
  12. Gocal, J. (2014), "Load carrying capacity of metal dowel type connections of timber structures", Civil Environ. Eng., 10, 51-60. https://doi.org/10.2478/cee-2014-0011.
  13. Gonzales Fueyo, J.L., Dominguez, M., Cabezas, J.A. and Rubio, M.P. (2008), "Design of connections with metal dowel-type fasteners in double shear", Mater. Struct., 42, 385-397. https://doi.org/10.1617/s11527-008-9389-3.
  14. Green, D.W., Winandy, J.E. and Kretschmann, D.E. (1999), "Wood handbook: Wood as an engineering material", General Technical Report FPL; GTR-113; USDA Forest Service, Forest Products Laboratory, Washington, D.C., USA.
  15. Lathuilliere, D., Bleron, L., Descamps, T. and Bocquet, J.F. (2015), "Reinforcement of dowel type connection", Constr. Build. Mater., 97, 48-54. https://doi.org/10.1016/j.conbuildmat.2015.05.088.
  16. Li, S., Zhou, Z., Luo, H., Milani, G. and Abruzzese, D. (2020), "Behavior of traditional Chinese mortise-tenon joints: Experimental and numerical insight for coupled vertical and reversed cyclic horizontal loads", J. Build. Eng., 30, 101257. https://doi.org/10.1016/j.jobe.2020.101257.
  17. Makhlouf, A.S.H. and Aliofkhazraei, M. (2018), Handbook of Materials Failure Analysis with Case Studies from the Construction Industries, Elsevier Science & Technology, Amsterdam, Netherlands.
  18. Meghlat, E.M., Oudjene, M., Ait-Aider, H. and Batoz, J.L. (2013), "A new approach to model nailed and screwed timber joints using the finite element method", Constr. Build. Mater., 41, 263-269. https://doi.org/10.1016/j.conbuildmat.2012.11.068.
  19. Norris, C. (1962), "Strength of orthotropic materials subjected to combined stress", Technical Report 1816; Forest Products Laboratory, U.S. Department of Agriculture Forest Service, Washington, D.C., USA.
  20. Ottenhaus, L.M., Li, Z. and Crews, K. (2022), "Half hole and full hole dowel embedment strength: A review of international developments and recommendations for Australian softwoods", Constr. Build. Mater., 344, 128130. https://doi.org/10.1016/j.conbuildmat.2022.128130.
  21. Pellicane, P.J. (2000), "Comparison of ASD and LRFD codes for wood members. III: Connections", Pract. Period. Struct. Des. Constr., 5(2), 66-69. https://doi.org/10.1061/(ASCE)1084-0680(2000)5:2(66).
  22. Porteous, J. and Kermani, A. (2007), Structural Timber Design to Eurocode 5, Blackwell Publishing Ltd., Hoboken, NJ, USA.
  23. Ren, G., Xue, J., Xu, D. and Ma, L. (2021), "Experimental and theoretical analysis on rotation performance of cress-shaped joints with dowel in traditional timber structures", J. Build. Eng., 37, 102163. https://doi.org/10.1016/j.jobe.2021.102163.
  24. Resch, E. and Kaliske, M. (2012), "Numerical analysis and design of double-shear dowel-type connections of wood", Eng. Struct., 41, 234-241. https://doi.org/10.1016/j.engstruct.2012.03.047.
  25. Schober, K.U. and Tannert, T. (2016), "Hybrid connections for timber structures", Eur. J. Wood Wood Prod., 74, 369-377. https://doi.org/10.1007/s00107-016-1024-3.
  26. Schmidt, R.J. and Daniels, C.E. (1999), "Design consideration for mortise tenon connections", Master thesis, Department of Civil and Architectural Engineering, University of Wyoming Laramie, Laramie, WY, USA.
  27. Wu, Y.J., Wang, L., Lin, H.S., Zhang, L.P. and Xie, Q.F. (2022), "Effect of shear force on the rotational performance of straight mortise-tenon joints", Struct., 41, 501-510. https://doi.org/10.1016/j.istruc.2022.05.034.
  28. Xue, J., Song, D. and Wu, C. (2021), "Precise finite element analysis of full-scale straight-tenon joints in ancient timber buildings", Int. J. Arch. Herit., 17(7), 1137-1152. https://doi.org/10.1080/15583058.2021.2017073.
  29. Yang, Q., Yu, Law, P. and Seong, S. (2020), "Load resisting mechanism of the mortise-tenon connection with gaps under in-plane forces and moments", Eng. Struct., 219, 110755. https://doi.org/10.1016/j.engstruct.2020.110755.
  30. Zarnani, P. and Quenneville, P. (2014), "Strength of timber connections under potential failure modes: An improved design procedure", Constr. Build. Mater., 60, 81-90. https://doi.org/10.1016/j.conbuildmat.2014.02.049.