DOI QR코드

DOI QR Code

Comparison of RANS, URANS, SAS and IDDES for the prediction of train crosswind characteristics

  • Xiao-Shuai Huo (Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic & Transportation Engineering, Central South University) ;
  • Tang-Hong Liu (Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic & Transportation Engineering, Central South University) ;
  • Zheng-Wei Chen (Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University) ;
  • Wen-Hui Li (School of Rail Transportation, Soochow University) ;
  • Hong-Rui Gao (Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic & Transportation Engineering, Central South University) ;
  • Bin Xu (Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic & Transportation Engineering, Central South University)
  • 투고 : 2021.12.26
  • 심사 : 2023.09.22
  • 발행 : 2023.10.25

초록

In this study, two steady RANS turbulence models (SST k-ω and Realizable k-ε) and four unsteady turbulence models (URANS SST k-ω and Realizable k-ε, SST-SAS, and SST-IDDES) are evaluated with respect to their capacity to predict crosswind characteristics on high-speed trains (HSTs). All of the numerical simulations are compared with the wind tunnel values and LES results to ensure the accuracy of each turbulence model. Specifically, the surface pressure distributions, time-averaged aerodynamic coefficients, flow fields, and computational cost are studied to determine the suitability of different models. Results suggest that the predictions of the pressure distributions and aerodynamic forces obtained from the steady and transient RANS models are almost the same. In particular, both SAS and IDDES exhibits similar predictions with wind tunnel test and LES, therefore, the SAS model is considered an attractive alternative for IDDES or LES in the crosswind study of trains. In addition, if the computational cost needs to be significantly reduced, the RANS SST k-ω model is shown to provide relatively reasonable results for the surface pressures and aerodynamic forces. As a result, the RANS SST k-ω model might be the most appropriate option for the expensive aerodynamic optimizations of trains using machine learning (ML) techniques because it balances solution accuracy and resource consumption.

키워드

과제정보

This work was supported by the National Natural Science Foundation of China (Grant No. 52202426), the National Key R&D Program of China (Grant No. 2020YFA0710903), the Fundamental Research Funds for the Central Universities of Central South University (Grant No. 2021zzts0171), Hong Kong and Macau Joint Research and Development Fund of Wuyi University (Grant No. 2019WGALH15, 2019WGALH17, 2021WGALH15), and Guangdong-Hong Kong-Macao Research Team Project - Guangdong Basic and Applied Basic Research Fund (Grant No. 2021B1515130006).

참고문헌

  1. An, J.D., Wang, T.T., Shi, Y.F., Wu, X.X., Liu, Y.Y., Huo, J.Z. and Ding, B. (2020), "A multi-responsive regenerable waterstable two-dimensional cadmium (II) fluorescent probe for highly selective, sensitive and real-time sensing of nitrofurazone and cupric ion", J Mol Struct. 1216. https://doi.org/10.1016/j.molstruc.2020.128328.
  2. ANSYS, I. (2013), Ansys Fluent Theory Guide, Cannonsburg, PA, USA: ANSYS, Inc
  3. Baker, C. (2010), "The simulation of unsteady aerodynamic cross wind forces on trains", J. Wind Eng. Ind. Aerod., 98(2), 88-99. https://doi.org/10.1016/j.jweia.2009.09.006.
  4. Baker, C., Cheli, F., Orellano, A., Paradot, N., Proppe, C. and Rocchi, D. (2009), "Cross-wind effects on road and rail vehicles", Vehicle Syst. Dyn., 47(8), 983-1022. https://doi.org/10.1080/00423110903078794.
  5. Baker, C., Jones, J., Lopez-Calleja, F. and Munday, J. (2004), "Measurements of the cross wind forces on trains", J. Wind Eng. Ind. Aerod., 92(7-8), 547-563. https://doi.org/10.1016/j.jweia.2004.03.002.
  6. Bocciolone, M., Cheli, F., Corradi, R., Muggiasca, S. and Tomasini, G. (2008), "Crosswind action on rail vehicles: Wind tunnel experimental analyses", J. Wind Eng. Ind. Aerod., 96(5), 584-610. https://doi.org/10.1016/j.jweia.2008.02.030.
  7. Catanzaro, C., Cheli, F., Rocchi, D., Schito, P. and Tomasini, G. (2010), "High-speed train crosswind analysis: CFD study and validation with wind-tunnel tests", International Conference on Engineering Conferences International. Potsdam, September. https://doi.org/10.1007/978-3-319-20122-1_6.
  8. Cheli, F., Corradi, R. and Tomasini, G. (2012), "Crosswind action on rail vehicles: A methodology for the estimation of the characteristic wind curves", J. Wind Eng. Ind. Aerod., 104, 248-255. https://doi.org/10.1016/j.jweia.2012.04.006.
  9. Cheli, F., Ripamonti, F., Rocchi, D. and Tomasini, G. (2010), "Aerodynamic behaviour investigation of the new EMUV250 train to cross wind", J. Wind Eng. Ind. Aerod., 98(4-5), 189-201. https://doi.org/10.1016/j.jweia.2009.10.015.
  10. Chen, Z.-w., Liu, T.-h., Guo, Z.-j., Huo, X.-s., Li, W.-h. and Xia, Y.-t. (2022), "Dynamic behaviors and mitigation measures of a train passing through windbreak transitions from ground to cutting", J. Central South Univ., 29(8), 2675-2689. http://libdb.csu.edu.cn:80/rwt/SPRINGERLINK/https/MSYXTLUQPJUB/10.1007/s11771-022-5114-6.
  11. Chen, Z.-W., Ni, Y.-Q., Wang, Y.-W., Wang, S.-M. and Liu, T.-H. (2022), "Mitigating crosswind effect on high-speed trains by active blowing method: a comparative study", Eng. Appl. Comput. Fluid Mech., 16(1), 1064-1081. https://doi.org/10.1080/19942060.2022.2064921.
  12. Chen, Z.-W., Rui, E.-Z., Liu, T.-H., Ni, Y.-Q., Huo, X.-S., Xia, Y.-T., Li, W.-H., Guo, Z.-J. and Zhou, L. (2022), "Unsteady aerodynamic characteristics of a high-speed train induced by the sudden change of windbreak wall structure: A case study of the Xinjiang Railway", Appl. Sci., 12(14), 7217. https://doi.org/10.3390/app12147217.
  13. Chen, Z., Liu, T., Jiang, Z., Guo, Z. and Zhang, J. (2018), "Comparative analysis of the effect of different nose lengths on train aerodynamic performance under crosswind", J. Fluids Struct., 78, 69-85. https://doi.org/10.1016/j.jfluidstructs.2017.12.016.
  14. Chen, Z., Liu, T., Li, W., Guo, Z. and Xia, Y. (2021), "Aerodynamic performance and dynamic behaviors of a train passing through an elongated hillock region beside a windbreak under crosswinds and corresponding flow mitigation measures", J. Wind Eng. Ind. Aerod., 208, 104434. https://doi.org/10.1016/j.jweia.2020.104434.
  15. Chen, Z., Liu, T., Yu, M., Chen, G., Chen, M. and Guo, Z. (2020), "Experimental and numerical research on wind characteristics affected by actual mountain ridges and windbreaks: A case study of the Lanzhou-Xinjiang high-speed railway", Eng. Appl. Comput. Fluid Mech., 14(1), 1385-1403. https://doi.org/10.1080/19942060.2020.1831963.
  16. Chiu, T. and Squire, L. (1992), "An experimental study of the flow over a train in a crosswind at large yaw angles up to 90", J. Wind Eng. Ind. Aerod., 45(1), 47-74. https://doi.org/10.1016/0167-6105(92)90005-U.
  17. Copley, J. (1987), "The three-dimensional flow around railway trains", J. Wind Eng. Ind. Aerod., 26(1), 21-52. https://doi.org/10.1016/0167-6105(87)90034-1.
  18. Davidson, L. (2006), "Evaluation of the SST-SAS model: channel flow, asymmetric diffuser and axi-symmetric hill", ECCOMAS CFD. Netherlands, September. http://resolver.tudelft.nl/uuid:5d23e2a6-5675-450d-bf3d1dd40d736cae
  19. Gao, H., Liu, T., Gu, H., Jiang, Z., Huo, X., Xia, Y. and Chen, Z. (2021), "Full-scale tests of unsteady aerodynamic loads and pressure distribution on fast trains in crosswinds", Measurement. 186, 110152. https://doi.org/10.1016/j.measurement.2021.110152.
  20. Garcia, J., Munoz-Paniagua, J., Jimenez, A., Migoya, E. and Crespo, A. (2015), "Numerical study of the influence of synthetic turbulent inflow conditions on the aerodynamics of a train", J. Fluids Struct., 56, 134-151. https://doi.org/10.1016/j.jfluidstructs.2015.05.002.
  21. Guo, Z., Liu, T., Chen, Z., Liu, Z., Monzer, A. and Sheridan, J. (2020), "Study of the flow around railway embankment of different heights with and without trains", J. Wind Eng. Ind. Aerod., 202, 104203. https://doi.org/10.1016/j.jweia.2020.104203.
  22. Hemida, H. and Krajnovic, S. (2009), "Exploring flow structures around a simplified ICE2 train subjected to a 30 side wind using LES", Eng. Appl. Comput. Fluid Mech., 3(1), 28-41. https://doi.org/10.1080/19942060.2009.11015252.
  23. Hemida, H. and Krajnovic, S. (2010), "LES study of the influence of the nose shape and yaw angles on flow structures around trains", J. Wind Eng. Ind. Aerod., 98(1), 34-46. https://doi.org/10.1016/j.jweia.2009.08.012.
  24. Huo, X.-S., Liu, T.-H., Chen, Z.-W., Li, W.-H., Niu, J.-Q. and Gao, H.-R. (2022), "Aerodynamic characteristics of double-connected train groups composed of different kinds of high-speed trains under crosswinds: A comparison study", Alexandria Eng. J., https://doi.org/10.1016/j.aej.2022.09.011.
  25. Huo, X., Liu, T., Yu, M., Chen, Z., Guo, Z., Li, W. and Wang, T. (2020), "Impact of the trailing edge shape of a downstream dummy vehicle on train aerodynamics subjected to crosswind", Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 0954409720915039. https://doi.org/10.1177/0954409720915039.
  26. Jiang, Z., Liu, T., Gu, H. and Guo, Z. (2021), "Research on the reasonable end shape of the windbreak wall model in the wind tunnel test via numerical simulation", Vehicle Syst. Dyn., 1-21. https://doi.org/10.1080/00423114.2021.1955136.
  27. Krajnovic, S. (2008). "Numerical simulation of the flow around an ICE2 train under the influence of a wind gust", 2008 International Conference on Railway Engineering-Challenges for Railway Transportation in Information Age. Hong Kong, March. https://ieeexplore.ieee.org/abstract/document/4730862.
  28. Krajnovic, S., Ringqvist, P., Nakade, K. and Basara, B. (2012), "Large eddy simulation of the flow around a simplified train moving through a crosswind flow", J. Wind Eng. Ind. Aerod., 110, 86-99. https://doi.org/10.1016/j.jweia.2012.07.001.
  29. Li, T., Qin, D. and Zhang, J. (2019), "Effect of RANS turbulence model on aerodynamic behavior of trains in crosswind", Chin J Mech. Eng-En. 32(1), 1-12. https://doi.org/10.1186/s10033-019-0402-2.
  30. Li, W., Liu, T., Martinez-Vazquez, P., Chen, Z., Huo, X., Guo, Z. and Xia, Y. (2021), "Yaw effects on train aerodynamics on a double-track viaduct: A wind tunnel study", Wind Struct., 33(3), 201-215. https://doi.org/10.12989/was.2021.33.3.201.
  31. Li, W., Liu, T., Martinez-Vazquez, P., Chen, Z., Huo, X., Liu, D. and Xia, Y. (2022), "Correlation tests on train aerodynamics between multiple wind tunnels", J. Wind Eng. Ind. Aerod., 229, 105137. https://doi.org/10.1016/j.jweia.2022.105137.
  32. Li, W., Liu, T., Zhou, L., Chen, Z., Xia, Y. and Huo, X. (2022), "Impact of ballast length on train aerodynamics for a wind tunnel layout via CFD analysis", Alexandria Eng. J., https://doi.org/10.1016/j.aej.2022.10.040.
  33. Liu, T.-H., Wang, L., Chen, Z.-W., Gao, H.-R., Li, W.-H., Guo, Z.-j., Xia, Y.-T., Huo, X.-S. and Wang, Y.-W. (2022), "Study on the pressure pipe length in train aerodynamic tests and its applications in crosswinds", J. Wind Eng. Ind. Aerod., 220, 104880. https://doi.org/10.1016/j.jweia.2021.104880.
  34. Liu, T., Chen, Z., Zhou, X. and Zhang, J. (2018), "A CFD analysis of the aerodynamics of a high-speed train passing through a windbreak transition under crosswind", Eng. Appl. Comput. Fluid Mech., 12(1), 137-151. https://doi.org/10.1080/19942060.2017.1360211.
  35. Maleki, S., Burton, D. and Thompson, M.C. (2017), "Assessment of various turbulence models (ELES, SAS, URANS and RANS) for predicting the aerodynamics of freight train container wagons", J. Wind Eng. Ind. Aerod., 170, 68-80. https://doi.org/10.1016/j.jweia.2017.07.008.
  36. Menter, F. and Egorov, Y. (2010), "The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: Theory and model description", Flow, Turbulence Combust., 85(1), 113-138. https://doi.org/10.1007/s10494-010-9264-5.
  37. Menter, F. and Kuntz, M. (2004), Adaptation of Eddy-Viscosity Turbulence Models to Unsteady Separated Flow Behind Vehicles, Springer https://doi.org/10.1007/978-3-540-44419-0_30.
  38. Menter, F.R. (1994), "Two-equation eddy-viscosity turbulence models for engineering applications", AIAA J., 32(8), 1598-1605. https://doi.org/10.2514/3.12149.
  39. Morden, J.A., Hemida, H. and Baker, C.J. (2015), "Comparison of RANS and detached eddy simulation results to wind-tunnel data for the surface pressures upon a class 43 high-speed train", J. Fluids Eng., 137(4), 041108. https://doi.org/10.1115/1.4029261.
  40. Munoz-Paniagua, J. and Garcia, J. (2019), "Aerodynamic surrogate-based optimization of the nose shape of a high-speed train for crosswind and passing-by scenarios", J. Wind Eng. Ind. Aerod., 184, 139-152. https://doi.org/10.1016/j.jweia.2018.11.014.
  41. Munoz-Paniagua, J., Garcia, J. and Lehugeur, B. (2017), "Evaluation of RANS, SAS and IDDES models for the simulation of the flow around a high-speed train subjected to crosswind", J. Wind Eng. Ind. Aerod., 171, 50-66. https://doi.org/10.1016/j.jweia.2017.09.006.
  42. Niu, J.-q., Zhou, D., Liu, T.-h. and Liang, X.-f. (2017), "Numerical simulation of aerodynamic performance of a couple multiple units high-speed train", Vehicle Syst. Dyn., 55(5), 681-703. https://doi.org/10.1080/00423114.2016.1277769.
  43. Shur, M.L., Spalart, P.R., Strelets, M.K. and Travin, A.K. (2008), "A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities", Int. J. Heat Fluid Flow. 29(6), 1638-1649. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001.
  44. Spalart, P. and Shur, M. (1997), "On the sensitization of turbulence models to rotation and curvature", Aeros. Sci. Technol., 1(5), 297-302. https://doi.org/10.1016/S1270-9638(97)90051-1.
  45. Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K. and Travin, A. (2006), "A new version of detached-eddy simulation, resistant to ambiguous grid densities", Theoretic. Comput. Fluid Dyn., 20(3), 181-195. https://doi.org/10.1007/s00162-006-0015-0.
  46. Wang, S., Bell, J.R., Burton, D., Herbst, A.H., Sheridan, J. and Thompson, M.C. (2017), "The performance of different turbulence models (URANS, SAS and DES) for predicting high-speed train slipstream", J. Wind Eng. Ind. Aerod., 165, 46-57. https://doi.org/10.1016/j.jweia.2017.03.001.
  47. Xia, Y., Liu, T., Su, X., Jiang, Z., Chen, Z. and Guo, Z. (2022), "Aerodynamic influences of typical windbreak wall types on a high-speed train under crosswinds", J. Wind Eng. Ind. Aerody., 231, 105203. https://doi.org/10.1016/j.jweia.2022.105203.
  48. Zhao, H., Zhai, W. and Chen, Z. (2015), "Effect of noise barrier on aerodynamic performance of high-speed train in crosswind", Wind Struct., 20(4), 509-525. https://doi.org/10.12989/was.2015.20.4.509.