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Abstract
In this research, a conversion function and a distortion associated with the conversion function are defined

and used to derive a unit power Gompertz distortion. A new family of copulas is built using the global distorted
function. Four base copulas, namely Clayton, Gumbel, Frank, and Gaussian, are distorted into the family. Some
properties including tail dependence coefficients and tail order are examined. Kendall’s tau formula is derived for
new copulas when the base copula is Clayton, Gumbel, or Frank. The maximum pseudo-likelihood estimation
method is employed, and a simulation study was performed. The log-likelihood and AIC are reported to compare
the performance of the fitted copulas. According to the applied data, the results indicate that new distorted
copulas with additional parameters improve the fit.
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1. Introduction

Dependence occurs between different events or co-movements in a variety of real-world situations,
including finance, medicine, and insurance (McNeil et al., 2006; Cherubini et al., 2004; Klugman
and Parsa, 1999). One of the functions commonly used to investigate this dependence is known as
copula. Sklar (1959) explores the first notation for a copula, and he defines the copula as a multivariate
distribution function with uniform margins; for further details, see Joe (2015). Dependence can be
represented by one or more variables, and the choice of a fitted copula model for the dependence
between random variables can be carried out independently from the selection of margins (Jaworski
et al., 2010; Frees and Valdes, 1998).

Sklar’s theorem has been considered a main result for the copula function recognized in the lit-
erature, and from the result of this theorem, the copula method (or sometimes called the inversion
method, e.g., see Nelsen, 2006), which plays a key role in deriving numerous copulas such as Clay-
ton, Frank, Gumbel, and Gaussian from their distributions (Nelsen, 2006), is established. In recent
work, the focus has been on generating new copulas with extra parameters to make copula models
more flexible, thereby potentially providing a better fit (Aldhufairi and Sepanski, 2020; Xie et al.,
2019).

The motivation of this study is to highlight an alternative approach for deriving a new distortion,
generalizing some results of distorted copulas, and constructing a new family of distorted copulas
with three parameters via a unit power Gompertz distortion, and that family can be utilized to model
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several phenomena, such as in financial studies. This is robust, as new copula models indicate a better
fit for real data.

The remainder of this paper is organized as follows: In Section 2, the family of the UPG copulas
and their corresponding conditional copula and copula density are formulated, and some examples
are offered after limiting cases in parameters are provided. Section 3 presents the conversion function
and the unit power Gompertz (UPG) distortion, and it studies the admissibility conditions on the
parameters. Section 4 examines tail behaviors, and the Kendall’s tau measure is detailed in Section 5.
To assess the performance of the new UPG-distorted copula models, we apply the data set in Section
6, while the concluding remarks are provided in Section 7.

2. Copula models

Let X1, X2, . . . , Xn be continuous random variables. Consider Fi(xi) = P(Xi ≤ xi) corresponds to a
univariate margin. Let H be a multivariate distribution function.

2.1. Copula

Two properties hold for any base copula C: 1) C is grounded, that is, C(u1, . . . , un) = 0 if ui = 0
for at least one index i ∈ {1, 2, . . . , n} and C(1, . . . , 1, ui, 1, . . . , 1) = ui if all the coordinates of
(u1, . . . , ui, . . . , un) are 1 except ui; and 2) C is n−increasing, that is, for all (a1, . . . , an), (b1, . . . , bn) ∈
[0, 1]× · · · × [0, 1] (n times) such that ai ≤ bi for all 1 ≤ i ≤ n,we have ∆

(n)
(an,bn)∆

(n−1)
(an−1,bn−1) · · ·∆

(1)
(a1,b1)C(u1,

u2, . . . , un) ≥ 0,where ∆
(i)
(ai,bi)

C(u1, u2, . . . , un) = C(u1, . . . , ui−1, bi, ui+1, . . . , un)−C(u1, . . . , ui−1, ai, ui+1
, . . . , un). From Sklar’s theorem (see Nelsen, 2006), there exists a unique copula C such that

H (x1, x2, . . . , xn) = C (F1(x1), . . . , Fn(xn)) .

If Ui = Fi(Xi)
iid
∼ Unif[0, 1], for i = 1, 2, . . . , n, we can write

C (u1, u2, . . . , un) = H
(
F−1

1 (u1), . . . , F−1
n (un)

)
.

If H is n times differentiable function, the joint probability density function h can be obtained by the
following

h (x1, x2, . . . , xn) = ∂nH (x1, x2, . . . , xn) /∂xn · · · ∂x2∂x1.

The conditional copula and copula density can be, respectively, formulated by C(u1, . . . , ui−1, ui+1, . . . ,
un|ui) = ∂C(u1, . . . , ui−1, ui, ui+1, . . . , un)/∂ui and c(u1, u2, . . . , un) = ∂nC(u1, u2, . . . , un)/∂un · · · ∂u2∂u1.

2.2. Distortion

A distortion T , which maps from [0, 1] to [0, 1], is defined as an increasing and continuous function
satisfying T (0) = 0 and T (1) = 1. It is described as the simultaneous distortion of the margins and
copula in Valdez and Xiao’s (2011) work, see Durante and Sempi (2005). For i = 1, 2, 3, . . . , n, if the
function Ti : [0, 1]→ [0, 1] is increasing and continuous with Ti(0) = 0 and Ti(1) = 1, Di Bernardino
and Rulliere (2013) state that the global distorted distribution function H̃ of H is defined as

H̃ (x1, x2, . . . , xn) = T ◦C
(
T−1

1 (F1(x1)) , . . . ,T−1
n (Fn(xn))

)
. (2.1)

The marginal distribution of H̃ is given by F̃i = T ◦ T−1
i ◦ Fi, for i = 1, 2, . . . , n. Charpentier (2008)

and Valdez and Xiao (2011) dealt with a particular situation where T = T1 = · · · = Ti, and their study
involved the bivariate case.
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Let R be a set of real numbers. Let ζ : R → R be any bijective and increasing function, then ζ is
said to be a conversion function, and by Di Bernardino and Rulliere (2013), the associate distortion
to ζ is given by Tζ : [0, 1]→ [0, 1] such that

Tζ(u) = logit−1 (
ζ
(
logit(u)

))
=

eζ(log(u/(1−u)))

1 + eζ(log(u/(1−u)))
. (2.2)

For all u ∈ [0, 1], Tζ is increasing because T
′

ζ(u) ≥ 0, and Tζ(0) = 0, Tζ(1) = 1. Furthermore, the
inverse function of Tζ satisfies T−1

ζ = Tζ−1 .

Denote the distorted function by C̃, which does not have necessarily to be a copula, such that
H̃(x1, x2, . . . , xn) = C̃(F̃1(x1), . . . , F̃n(xn)). According to Proposition 2.5, as derived from the work of
Di Bernardino and Rulliere (2013), the function C̃ is only affected by the external distortion T , that is,

C̃ (u1, . . . , un) = T
(
C

(
T−1(u1), . . . ,T−1(un)

))
. (2.3)

T is deemed to be an admissible distortion if (2.3) is a copula. Given that s1, s2, r1, and r2 are real
numbers with two intervals I1 and I2 in R such that r1 ≤ r2 and s1 ≤ s2, it is said that the function
L : I1 × I2 → R is totally positive of order 2, denoted by TP2, if

L (r1, s1) L (r2, s2) ≥ L (r1, s2) L (r2, s1) .

In general, if the base bivariate copula C is TP2 and T ◦ exp is log-convex, then the bivariate distorted
function C̃ is TP2, and thus, it satisfies the 2-increasing property based on Lemma 3.1 stated by
Durante et al. (2010). In addition to the aforementioned property, because C is a base copula, then
the bivariate distorted function C̃ is a copula because the grounded property is preserved under the
distortion T.

3. Conversion function and distortion

From (2.2), set w = logit(u) = log(u/(1 − u)). For u ∈ [0, 1], we have w ∈ [−∞,∞], and the inverse
transform is u = ew/(1 + ew).

3.1. Examples of distortions

Here, in the following examples, we attempt to define the conversion function ζ such that the associate
distortion in (2.2) satisfies the definition of distortion and is convex. The associate distortion func-
tions we derive below are found in the work of Sepanski (2020).

- If ζ1(u) = − log
(
e(− log(eu/(1+eu)))δ1 −1

)
, δ1 ≤ 1, the associate distortion Tζ1 to ζ1 produces the Weibull-

log distortion given by Tζ1 (u) = e−(− log u)δ1 , where the inverse is given by T−1
ζ1

(u) = e−(− log u)1/δ1 .

- If ζ2(u) = − log
(
1/(1− (1 + eu)−δ1 )− 1

)
, δ2 ≤ 1, the associate distortion Tζ2 to ζ2 produces the dual-

power distortion given by Tζ2 (u) = 1−(1−u)δ2 ,where the inverse is given by T−1
ζ2

(u) = 1−(1−u)1/δ2 .

- If ζ3(u) = − log
(
(eu/(1 + eu))−δ3 − 1

)
, δ3 ≥ 1, the associate distortion Tζ3 to ζ3 produces the power

distortion given by Tζ3 (u) = uδ3 , where the inverse is given by T−1
ζ3

(u) = u1/δ3 .

- If ζ4(u) = − log
(
[−δ4/ log((1 + eδ4+u)/(1 + eu))] − 1

)
, δ4 > 0, the associate distortion Tζ4 to ζ4

produces the logarithmic distortion given by Tζ4 (u) = − log(1− u(1− e−δ4 ))/δ4, where the inverse is
given by T−1

ζ4
(u) = (1 − e−δ4u)/(1 − e−δ4 ).
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- If ζ5(u) = − log
(
[1 − log (eu/(1 + eu))]δ5 − 1

)
, δ5 > 0, the associate distortion Tζ5 to ζ produces the

Lomax-log distortion given by Tζ5 = (1−log u)−δ5 ,where the inverse is given by T−1
ζ5

(u) = e(1−u−1/δ5 ).

Note that the functions ζ1, ζ2, ζ3, ζ4, and ζ5 are bijective and increasing, thereby satisfying ζ(−∞) =

−∞ and ζ(∞) = ∞. If δ1 = δ2 = δ3 = 1, from (2.1),

C
(
T−1
ζ1

(u1),T−1
ζ2

(u2),T−1
ζ3

(u3)
)

= C (u1, u2, u3) . (3.1)

3.2. Gompertz distortion

The Gompertz distribution was derived by Gompertz (1825), and it has several real applications; see
Ahuja and Nash (1967) and references therein. It is one of the distributions mentioned by Durante et
al. (2010), and hence, we intend to use this distribution to construct our new copula models.

Define

ζ(v) = − log
(

1
1 −G

(
log

(
1 − log (ev/(1 + ev))

)) − 1
)
, (3.2)

where G is a distribution function. If ζ0(v) = 1−G(log (1− log (ev/(1 + ev)))), then the first derivative
of ζ0 with respect to v is given by ζ

′

0(v) = g(log (1 − log(ev/(1 + ev))))/[(1 + ev)(1 − log(ev/(1 + ev)))],
where G

′

= g. Thus, ζ
′

(v) = ζ
′

0(v)/[(1 − ζ0(v))ζ0(v)]. ζ
′

is increasing. Let G be a power Gompertz
(PG) distribution defined as G(z) = 1 − exp[−ba−1(eaz − 1)], z > 0, for a, b > 0. Applying (3.2), we
obtain ζPG(v) = − log (eb[(1−log (ev/(1+ev)))a−1]/a−1). As a result, from (2.2), the associate UPG distortion
to ζPG is

TζPG (v) = e
−b[(1−log v)a

−1]
a . (3.3)

The probability density function and quantile function of V are defined as

tζPG (v) = T
′

ζPG
(v) =

b
v
(
1 − log v

)a−1 e
−b[(1−log v)a

−1]
a ,

and

T−1
ζPG

(v) = e

[(
1−(1−(a log v)

b

) 1
a
]
, (3.4)

respectively.
When a = 1 in (3.3), the UPG distortion is transformed into the power distortion, which has the

form TζPG (u) = ub, b > 0. The power distortion is a distortion function because it is increasing on
[0, 1] with T (0) = 0 and T (1) = 1 for all b > 0.

For any base copula C, the family of the UPG distorted distributional function (shortly, the UPG
distorted function) is overall given by

C̃TζPG
(u1, . . . , un) = exp

(
−ba−1

[(
1 − log C

(
e[1−(1−(a log u1)/b)1/a], . . . , e[1−(1−(a log un)/b)1/a]

))a
− 1

])
.

(3.5)

If a = 1 and b = 1, the UPG distorted function C̃TζPG
becomes equal to a base copula C, and thus,

C̃TζPG
is a copula function.
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From (2.1) and (3.1), the following distorted function

C̃T123 (u1, u2, u3) = TζPG ◦C
(
T−1
ζ1

(u1),T−1
ζ2

(u2),T−1
ζ3

(u3)
)

is equal to a base copula C(u1, u2, u3) when a = b = δ1 = δ2 = δ3 = 1. It is worth to notice, that
C̃T123 (u1, u2, u3) = C

(
T−1
ζ1

(u1),T−1
ζ2

(u2),T−1
ζ3

(u3)
)

when a = b = 1.
General bivariate forms of the conditional cdf and copula pdf of C̃ can be found in Aldhufairi et

al. (2020).
According to Theorem 3.2, as derived by Durante et al. (2010), we show that TζPG ◦ exp :

(−∞, 0]→ [0, 1] is log-convex under the admissibility mentioned in the following corollary.

Corollary 3.1. Let TζPG (u) be the UPG distortion for u ∈ [0, 1]. TζPG is a log-convex function if
0 < a ≤ 1 and b > 0.

Proof: Define B(x) = log ◦TζPG ◦ exp(x). Then, the function B(x) = −b[(1− x)a − 1]/a has its first and
second derivatives with respect to x as follows: B

′

(x) = b(1 − x)a−1 and B
′′

(x) = b(1 − a)(1 − x)a−2.
Thus, the second derivative B

′′

is non-negative if 0 < a ≤ 1 and b > 0 for x ∈ (−∞, 0].

3.3. Examples of distorted copulas

We focus on the bivariate case in the examples of proposed copula models offered in this section.
According to Joe (1997), the base copulas are TP2 in any of the following examples, which are con-
structed using (3.3), (3.4), and (2.3).

One popular class of copulas is Archimedean, defined as if a generator function φ : [0, 1]→ [1,∞)
is continuous, strictly decreasing, and convex with φ(1) = 0 exists and generates the copula via
C(u1, . . . , un) = φ[−1](φ(u1) + · · · + φ(un)). If φ(0) = ∞, then φ[−1] = φ−1. If a base copula C with
a generator φ belongs to the Archimedean class, then the distorted copula does too. Its distorted
generator is given by φ̃ = φ ◦ T−1, as demonstrated by Aldhufairi et al. (2020). One can then rewrite
(3.5) as follows:

C̃TζPG
(u1, . . . , un) = φ̃−1

(
φ̃(u1) + φ̃(u2) + · · · + φ̃(un)

)
, φ̃(u) = φ

(
e[1−(1−(a log v)/b)1/a]

)
.

Di Bernardino and Rulliere (2013) report on page 7 that T is an admissible distortion if and only if φ̃
is a n−monotone function. This result allows for the generalization of the distorted copulas. It can be
accomplished by expanding the findings of Theorem 3.2 and Lemma 3.1 from the work of Durante et
al. (2010). Furthermore, there is a need to carefully investigate which of the copulas are multivariate
and totally positive of order 2. This may create a gap for future research.

Another popular class of copulas is referred to as extreme-value, defined as if a convex function
A : [0, 1]→ [1/2, 1], satisfying A(0) = A(1) = 1, and max{t, 1 − t} ≤ A(t) ≤ 1 exists and produces the
copula via C(u, v) = exp[log(uv)A(log(v)/ log(uv))], u, v ∈ [0, 1] (Gudendorf and Segers, 2010).

Unlike Clayton and Frank that belong to the Archimedean class only, Gumbel belongs to the
Archimedean and extreme-value classes. Some copulas have no closed form; for instance, the Gaus-
sian copula that is proposed from the Gaussian distribution.

Example 3.1. (UPG-Clayton copula) The Clayton copula with its generator is given by

C (u1, u2; θ) =
(
u−θ1 + u−θ2 − 1

) −1
θ , θ > 0, φ(u) =

(
u−θ − 1

)
θ

.
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The UPG-distorted Clayton copula (shortly, UPG-Clayton copula) can be expressed as

CTζPG
(u1, u2) = exp

−b
a


1 + θ−1 log

 2∑
i=1

e−θ[1−(1−ab−1 log ui)
1
a ] − 1




a

− 1


 ,

and its generator is φ̃(u) = {e−θ[1−(1−ab−1 log u)1/a] − 1}/θ.

Example 3.2. (UPG-Gumbel copula) The Gumbel copula with its generator is given by

C (u1, u2; θ) = exp
{
−

[(
− log u1

)θ
+

(
− log u2

)θ] 1
θ

}
, θ ≥ 1, φ(t) =

(
− log t

)θ .
The UPG-distorted Gumbel copula (shortly, UPG-Gumbel copula) is

CTζPG
(u1, u2) = exp

−b
a


1 +

 2∑
i=1

((
1 − ab−1 log ui

) 1
a
− 1

)θ
1
θ


a

− 1


 ,

and its generator is φ̃(u) = [(1 − ab−1 log u)1/a − 1]θ.

Example 3.3. (UPG-Frank copula) The Frank copula with its generator is given by

C (u1, u2; θ) = −θ−1 log

1 +

[(
e−θu1 − 1

) (
e−θu2 − 1

)]
e−θ − 1

 , θ ≥ 0, φ(u) = − log
(

e−θu − 1
e−θ − 1

)
.

The UPG-distorted Frank copula (shortly, UPG-Frank copula) is

CTζPG
(u1, u2) = exp

−b
a


1 − log

−θ−1 log

1 +

Π2
i=1

(
e−θe

[1−(1−ab−1 log ui )1/a ]
− 1

)
e−θ − 1





a

− 1


 ,

and its generator is φ̃(u) = − log[(e−θe
1−(1−ab−1 log u)1/a

− 1)/(e−θ − 1)].

Example 3.4. (UPG-Gaussian copula) The Gaussian copula is given by

C (u1, u2; θ) = Φ2

(
Φ−1(u1),Φ−1(u2)

)
with its parameter θ ∈ [0, 1], where Φ−1(s) is the quantile function of the univariate standard Gaussian
distribution

Φ(s) =

∫ s

−∞

1
√

2π
e−(x2/2)dx.

The bivariate standard Gaussian distribution function Φ2 is given by

Φ2 (s1, s2) =

∫ s1

−∞

∫ s2

−∞

1

2π
√

1 − θ2
exp

(
−

x2 − 2θxy + y2

2
√

1 − θ2

)
dxdy.

Thus, the UPG-distorted Gaussian copula (shortly, UPG-Gaussian copula) is a direct application of
this expression TζPG (C(T−1

ζPG
(u1),T−1

ζPG
(u2))). That is,

CTζPG
(u1, u2) = TζPG

[
Φ2

(
Φ−1

(
T−1
ζPG

(u1)
)
,Φ−1

(
T−1
ζPG

(u2)
))]
. (3.6)
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3.4. Limiting case

The following proposition investigates the limit of the UPG copulas from a given copula C when one
or both parameters go to a boundary.

Proposition 3.1. Consider the UPG-distorted function in (3.5), where 0 < a ≤ 1 and b > 0. Then,
for any base copula C, if this exponent of CTζPG

, b(1 − log C(T−1
ζPG

(u1), . . . ,T−1
ζPG

(un)))a − 1 goes to
log u1 + · · · + log un whenever b→ ∞, we have that CTζPG

approaches the independence copula.

Proof: Let xi = e[1−(1−ab−1 log ui)1/a], for i = 1, . . . , n. Set m = 1/b and consider Im = C(x1, . . . , xn). As
C is a base copula, Im → 1 as m→ 0. By chain rule, the derivative of Im with respect to m is given by

dIm

dm
=
∂C(x1, . . . , xn)

∂x1

dx1

dm
+ · · · +

∂C (x1, . . . , xn)
∂xn

dxn

dm
.

For i = 1, 2, . . . , n, we have

dxi

dm
=

(
log ui

) (
1 − am log ui

) 1
a−1 exp

[
1 −

(
1 − am log ui

) 1
a

]
.

The limit of the exponent term in (3.5) as b→ ∞ exists, by L’Hopital’s rule,

lim
m→0

(
1 − log Im

)a
− 1

am
= − lim

m→0

(
1 − log Im

)a−1

Im

dIm

dm
.

As m→ 0, we have dxi/dm→ log ui, for i = 1, 2, . . . , n. Thus, we obtain the following limb→∞CTζPG

(u1, . . . , un) = u1 · · · un, which is the independent copula.
The limit of the UPG-distorted copula in the parameter obtained from a base copula C can be cal-

culated by finding the limit of the base copula in the parameter. The limits of the chosen base copulas
were evaluated in Joe (2015). For example, as θ → 0+, the bivariate Clayton copula C approaches the
independent copula. As a result, we derive the following: C(T−1(u1),T−1(u2)) → T−1(u1)T−1(u2), as
θ → 0+. Thus, the distorted bivariate copula C̃TζPG

approaches the copula exp(−ba−1[((1−
∑2

i=1(a log ui)
/b)1/a − 1)a − 1]) whenever θ → 0+.

3.5. Frèchet bounds and independent case

Here, we look at three common cases that show the impact of choosing the initial copula C in C̃.

- Assume C is counter-monotonic, which is the lower Frèchet, in bivariate case n = 2. If C(T−1(u1),T−1

(u2)) = max{T−1(u1) + T−1(u2) − 1, 0}, then we have C̃(u1, u2) = T ◦ C(T−1(u1),T−1(u2)) =

max{T (T−1(u1)+T−1(u2)−1), 0} since T is monotonically increasing. For example, when TζPG (u) =

ub, with b ≥ 1, then C̃(u1, u2) = max{(u−b1
1 + u−b1

2 − 1)−1/b1 , 0}, where b1 = −1/b ∈ [−1, 0), which is
the Clayton copula.

- If C is comonotonic, which is upper Frèchet, given by C(u1, . . . , un) = min(u1, . . . , un), then because
TζPG increases, we have C̃(u1, . . . , un) = TζPG

(
min(T−1

ζPG
(u1), . . . ,T−1

ζPG
(un))

)
= min(u1, . . . , un). Thus,

C̃ is also comonotonic. In this case, we can see that TPG has no effect on the result of the base
copula C. This implies that TPG plays the role of an identity distorter, T (u) = u.

- Consider that C is an independent copula. If C(T−1(u1), . . . ,T−1(un)) = T−1(u1)×· · ·×T−1(un), then
C̃(u1, . . . , un) = T ◦ C(T−1(u1), . . . ,T−1(un)) = T (T−1(u1) · · · T−1(un)). For example, if TζPG (u) =

ub, b > 0, we have C̃(u1, . . . , un) = u1 · · · un. Thus, C̃ is the independent copula.
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Table 1: Tail orders and dependence coefficients for copulas

Initial Copula κL or λL κU or λU

Gumbel κL = 21/θ λU = 2 − 21/θ

Clayton λL = 2−1/θ κU = 2
Frank κL = 2 κU = 2

Gaussian κL = 2/(1 + θ) κU = 2/(1 + θ)
UPG-Copula κLTζPG

or λLTζPG
κUTζPG

or λUTζPG

UPG-Gumbel κLTζPG
= 21/θ λU = 2 − 21/θ

UPG-Clayton λLTζPG
= 2−b/θ if a = 1 κUTζPG

= 2

UPG-Frank κLTζPG
= 2 κUTζPG

= 2

UPG-Gaussian κLTζPG
= 2/(1 + θ) κUTζPG

= 2/(1 + θ)

4. Tail orders and dependence coefficients

This section explores the lower and upper tail behaviors of the UPG copulas from a given base copula
C. One possible thought beyond the addition of new parameters is to produce new models of copulas
that adapt to the different behaviors of tail dependence to estimate risky and extreme events.

The survival copula is defined as Ĉ(u1, u2, . . . , un) = P(1 − U1 ≤ u1, 1 − U2 ≤ u2, . . . , 1 − Un ≤

un) = C̄(1 − u1, 1 − u2, . . . , 1 − un), where C̄ is the joint survival function of C. The survival bivariate
copula can be written as Ĉ(u1, u2) = u1 +u2−1+C(1−u1, 1−u2). A regularly varying function ` with
index ξ is defined by limu→0+ `(γu)/`(u) = γξ for all γ > 0. If ξ = 0, ` is said to be slowly varying, see
Hua and Joe (2013). If a lower tail dependence coefficient (λL) of a base copula C exists, the lower
tail dependence coefficient (λT,L) of the distorted copula CT is given by

λT,L = lim
u→0+

T
(
C

(
T−1(u),T−1(u)

))
u

= lim
u→0+

T (C(u, u))
T (u)

.

If an upper tail dependence coefficient (λU) of C exists, the upper tail dependence coefficient (λT,U)
of CT is given as follows:

λT,U = 2 − lim
u→1−

1 − T
(
C

(
T−1(u),T−1(u)

))
1 − u

= 2 − lim
u→0+

1 − T (C(u, u))
1 − T (u)

.

If we consider the following expansions

(1 + u)a ∼ 1 + au, log(1 − u) ∼ −u, eu ∼ 1 + u, as u→ 0,

we obtain T−1
ζPG

(1 − u) ∼ 1 − u/b, as u → 0+. For C(u, v) ∼ uκL`(u), the UPG-distorted copula has a
lower tail order of κL because

TζPG

(
C

(
T−1
ζPG

(u),T−1
ζPG

(v)
))

= e
b
[(

1−log C(T−1
ζPG

(u),T−1
ζPG

(v))
)a
−1

]
/a
∼ e

b
[(

1−a log (T−1
ζPG

(u))κL `(T−1
ζPG

(u))
)
−1

]
/a

∼ e
b
[
κL

(
1−(1−ab−1 log u)1/a

)
+log `

(
T−1
ζPG

(u)
)]
∼ e

b
[
κLb−1 log u+log `

(
T−1
ζPG

(u)
)]

∼ uκL
[
`
(
T−1
ζPG

(u)
)]b

.

Proposition 4.1. Let ` and `∗ be two slowly varying functions. As u→ 0+, assume C(u, u) ∼ uκL`(u)
and C(1 − u, 1 − u) ∼ uκU `∗(u) at 0+. The UPG copula CTζPG

satisfies the following: κLTζPG
= κL,

λTζPG ,L = (λL)b if a = 1, κTζPG ,U = κU , and λTζPG ,U = λU .
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Figure 1: Density contour plots with standard normal margins. The parameter is chosen so that the base copula
has Kendall’s tau of 1/2. The first and second columns show contour plots of the base and UPG-distorted copulas
with (θ, a, b) = (2, 1, 1), (0.71, 1, 1), and (5.82, 1, 1). The contour plots for the UPG-Clayton (2, 0.5, 1.25), UPG-

Gaussian (0.71, 0.25, 2), and UPG-Frank (5.82, 0.5, 1.5) are shown in the third column.

Proof: The lower tail dependence coefficient of CTζPG
is given by

λTζPG ,L = lim
u→0+

TζPG (C(u, u))
TζPG (u)

= lim
u→0+

e−b[(1−log C(u,u))a−1]/a

e−b[(1−log u)a−1]/a

= lim
u→0+

e
−ba−1(1−log u)a


1 − log C(u, u)

1 − log u


a

−1


. (4.1)

We can see some possibilities for (4.1). If a < 1, then λTζPG ,L = 0, which means there is no lower tail
dependence. If a = 1, then λTζPG ,L = limu→0+ e−b[log (u/C(u,u))] = (λL)b. However, the following can be
obtained from (3.5) as[

1 − log C
(
T−1
ζPG

(1 − u),T−1
ζPG

(1 − u)
)]a
∼

[
1 − log C (1 − u/b, 1 − u/b)

]a

∼
[
1 − log

(
1 − 2u/b + C (1 − u/b, 1 − u/b)

)]a
∼

[
1 − log (1 − 2u/b + (u/b)κU `∗(u/b))

]a

∼
[
1 + 2u/b − (u/b)κU `∗ (u/b)

]a
∼

[
1 + a (2u/b − (u/b)κU `∗(u/b))

]
= KPG.

It follows that

ĈTζPG
(u, v) = 2u − 1 + e

−ba−1
[(

1−log C(T−1
ζPG

(1−u),T−1
ζPG

(1−u))
)a
−1

]
∼ 2u − 1 + 1 − ba−1(KPG − 1)

∼ 2u − ba−1[2au/b − a(u/b)κU `∗ (u/b)] ∼ b1−κU uκU `∗ (u/b) .
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Figure 2: Kendall’s tau surface plot for the UPG-Frank copula, which displays tau values at fixed one of the
parameters θ = 15, a = 0.5, or b = 3 for the other two parameters.

As a result, the upper tail order κTζPG ,U of CTζPG
is κU . The upper tail dependence coefficient of CTζPG

is given by

λTζPG ,U = 2 − lim
u→1−

1 − e−b[(1−log C(u,u))a−1]/a

1 − e−b[(1−log u)a−1]/a

= 2 − lim
u→1−

e−b[(1−log C(u,u))a−1]/a

e−b[(1−log u)a−1]/a

[
1 − log C(u, u)

1 − log u

]a−1 u
C(u, u)

dC(u, u)
du


= λU .

Table 1 provides a summary of tail order and dependence for the base and new copulas. The new
UPG-distorted copulas can accommodate extra parameters in the lower tail dependence when the base
copula has the lower tail dependence.

Figure 1 displays contour plots of a bivariate pdf, h, for three new copulas distorted from Clayton,
Gaussian, and Frank. The parameters in all base copulas have been chosen when Kendall’s tau has a
value of 1/2.

A bivariate copula C is said to be symmetric when C(u1, u2) = C(u2, u1) for u1, u2 ∈ [0, 1]. As
shown in Figure 1, the resulting new copulas from the given symmetric Frank and Gaussian copulas
are asymmetric when a or b differ from a value of 1.

5. Kendall’s tau

The section derives the Kendall’s tau formulas for three copulas, namely, UPG-Clayton, UPG-Gumbel,
and UPG-Frank. Then, it studies the ordering of concordance based on the formulas we derive.

Copulas offer a natural approach for measuring the dependence between two random variables,
and one of these measures is called Kendall’s tau, which is a non-parametric measure.

The general and Archimedean formulas of Kendall’s tau for the bivariate distortion T can be found
in Aldhufairi et al. (2020).

Note that the values computed from the Kendall’s tau formula can either be an increase or de-
crease in one parameter while the remaining parameters are held constant. If the values obtained
from the Kendall’s tau formula increase but never decrease, or decrease but never increase, in such a
parameter r , then the function C̃ is ordered by r.

Example 5.1. Let φ be a generator function for Clayton. The following can be formulated as φ(u)/φ
′

(u)
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Figure 3: P-P plots show the estimated and empirical cumulative distributions for different theoretical models.
Results from fitting data obtained from the Clayton, Gumbel, Frank, and Gaussian copulas are shown in the
first row. Data fitting results generated using the UPG-Clayton, UPG-Gumbel, UPG-Frank, and UPG-Gaussian

copulas place in the second row.

= −θ−1u(1 − uθ). Kendall’s tau of the UPG-Clayton is given by

τφTζPG
= 1 −

4b2

θ

∫ 1

0

(
1 − uθ

)
u

(1 − log u)2a−2e−2b((1−log u)a−1)/adu.

The UPG-Clayton copula is ordered in a and b because checking the first derivative with respect to a
and b reveals that the UPG-Clayton copula is increasing in a and b.

Example 5.2. Let φ be a generator function for Gumbel. Then, φ(u)/φ
′

(u) = −u(− log(u))/θ, and
thus, Kendall’s tau for the UPG-Gumbel copula is given by

τφTζPG
= 1 −

4b2

θ

∫ 1

0

(
− log u

)
u

(
1 − log u

)2a−2 e−2b[(1−log u)a−1]/adu.

The UPG-Gumbel copula is also ordered in a and b because it is increasing in a and b.

Example 5.3. Let φ be a generator function for Frank. Then, φ(u)/φ
′

(u) = −θ−1(1 − eθu) log [(e−θu −
1)/(e−θ − 1)]. Thus, Kendall’s tau of the UPG-Frank with setting v = θu is given by

τφTζPG
= 1 − 4b2

∫ θ

0

(1 − ev)
(
1 − log (v/θ)

)2a−2

v2e2b((1−log (v/θ))a−1)/a log
[
e−v − 1
e−θ − 1

]
dv.

As shown in Figure 2, the concordance ordering in a or b can fail to hold. Nonmonotonic curves can
be seen with parameters a and b in the plots titled with fixed θ = 15 and b = 3 for the UPG-Frank
copula.
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Table 2: Summary statistics of BMI, BAI, BFP, and WC variables

BMI BAI BFP WC
Minimum 15.73 −6.68 10.83 0.24
Maximum 37.29 38.13 47.84 1.09

Median 23.24 22.02 27.25 0.81
1st quartile 21.15 18.71 21.82 0.75
3st quartile 25.72 25.19 32.16 0.88

Standard deviation 3.33 5.26 7.19 0.10

Figure 4: The correction matrix. Scatter plots of Kendall’s tau correlation between anthropometric measurements
(BMI, BAI, BFP, and WC) with a fitted line. Distribution of each variable in the data is diagonal in the matrix.

6. Application

Here, the data set is analyzed utilizing the R programming language to assess the performance of
the new UPG-distorted copula models in this section. Based on the chosen base copulas, namely,
Clayton, Gumbel, Frank, and Gaussian, the Akaike’s information criterion (AIC) statistics are used
to determine the best copula model. We perform the Cramer-von Mises (CvM) goodness-of-fit test
(Genest et al., 2009) and compare the performance of the statistics with the base copulas, where the
CvM test statistics measure the sum of square deviations between the empirical cdf and an estimated
copula cdf. Larger CvM values are less desired. The null hypothesis of the CvM is that a candidate
copula models bivariate data.

The data are analyzed using the maximum pseudo-likelihood estimation (MPLE), see Joe (2015)
for the bivariate case. The MPLE maximizes

m∑
i=1

log
[
cT

(
u1,i, u2,i, . . . , un,i; θ, a, b

)]
, (6.1)

where ui, j = Fi(xi, j), i = 1, 2, . . . , n, j = 1, 2, . . . ,m, are the pseudo-observations (shortly, pseudo-obs)
and cT is the copula pdf.
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Figure 5: Scatter plots between pseudo anthropometric measurements observations (pseudo-obs (BMI), pseudo-
obs (BAI), pseudo-obs (BFP), and pseudo-obs (WC)).

6.1. A simulation study

In this subsection, a simulation study is carried out to examine the flexibility of the new copulas as
a result of unit Gompertz distortion. For simulating bivariate data from copulas, see Aldhufairi et al.
(2020) for details about the conditional method they describe.

First, we simulated four bivariate data sets from Clayton, Gumbel, Frank, and Gaussian copu-
las, each with 1500 observations, using parameter values of 2, 2, 5.82, and 0.71, respectively. Then,
using UPG-Clayton, UPG-Gumbel, UPG-Frank, and UPG-Gaussian copulas with parameter values
of (2, 0.5, 1.25), (2, .5, 2), (0.71, 0.25, 2), and (5.82, 0.5, 1.5), four data sets of 1500 each were respec-
tively produced. The parameters are estimated using the pseudo-likelihood estimation method in (6.1).
Following that, each data set produced from the UPG-distorted copulas was fitted to using the base
copula models, and vice versa.

In the first and second rows of the P-P plots of the empirical cdf and the estimated cdf in Figure
3, the black curve is from the true copula model, while the curves that are not black are from fitting
the estimated copula models. We can identify which copula model has the worst fits by looking at
the departure curves from the black curve. For instance, it appears that the Clayton copula has the
worst models since the red curve strongly deviates from the black curve. Compared to the second
row of data, the first row of data generated from the base copulas appears to be well approximated by
various UPG-distorted copula models. It would assume that UPG-distorted copulas with additional
parameters will be more adaptable and enhance fit.

6.2. Data of anthropometric measurements

In this subsection, we use the data of 783 observations for anthropometric measurements on four
variables, body mass index (BMI), body adiposity index (BAI), body fat percentage (BFP), and widest
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Table 3: MPLE, AIC, θ̂ â, b̂, and parameter estimates (standard errors) for the UPG-distorted (base) and
UL-distorted copula models

Family MPLE AIC θ̂ â b̂

BMI & BAI

UPG-Clayton 220.80(139.20) −435.59(−276.33) 0.017(0.002)(2.092(0.084)) 0.713(0.002) 0.068(0.001)
UPG-Gumbel 271.08(256.40) −536.17(−510.82) 1.399(0.001)(1.919(0.053)) 0.518(0.001) 0.190(0.001)
UPG-Frank 259.64(257.70) −513.29(−513.42) 2.824(0.284)(5.920(0.308)) 0.306(0.041) 0.441(0.041)

UPG-Gaussian 260.26(258.70 ) −514.52(−515.35 ) 0.831(0.051)(0.699(0.012)) 0.991(1.023) 5.756(0.237)
UL-Clayton 205.25 −404.51 2.845(0.630) 2.702(0.252) 0.550(0.021)
UL-Gumbel 270.67 −535.33 1.569(0.065) 1.001(0.104) 4.236(1.211)
UL-Frank 236.33 −466.66 4.993(0.308) 1.001(0.046) 2.721(0.092)

UL-Gaussian 259.96 −513.93 0.784(0.012) 2.717(0.126) 1.005(0.001)

BMI & BFP

UPG-Clayton 170.81( 77.19) −335.61(−152.37) 0.001(0.003)(1.717(0.066) ) 0.437(0.262) 0.261(0.262)
UPG-Gumbel 226.75(224.90) −447.50(−447.80 ) 1.668(0.070)( 1.762(0.079)) 0.114(1.447) 6.825(2.798)
UPG-Frank 206.57(177.20) −407.14(−352.44 ) 2.609(0.327)(4.411(0.378)) 0.505(0.002) 0.184(0.002)

UPG-Gaussian 251.16(227.30) −496.31(−452.64) 0.417(0.014)(0.668(0.025)) 0.998(0.001) 0.023(0.001)
UL-Clayton 137.18 −268.36 2.536(0.291) 2.730(1.072) 1.172(0.002)
UL-Gumbel 226.77 −447.55 1.661(0.075) 4.913(1.632) 3.547(1.025)
UL-Frank 164.36 −322.73 3.381(0.277) 1.001(0.030) 2.720(0.063)

UL-Gaussian 227.84 −449.73 2.758(0.014) 2.717(0.103) 1.003(0.006)

BMI & WC

UPG-Clayton 241.48(116.70) −476.96(−231.35) 0.007(0.001)(2.271(0.092)) 0.412(0.002) 0.059(0.001)
UPG-Gumbel 293.13(285.40) −580.25(−568.86 ) 1.592(0.047)(2.019(0.052)) 0.669(0.001) 0.102(0.001)
UPG-Frank 281.61(273.80) −557.22(−545.59) 3.489(0.308)(6.271(0.292)) 0.359(0.040) 0.374(0.040)

UPG-Gaussian 268.63(263.40) −531.26(−524.71) 0.885(0.003)(0.704(0.011)) 0.999(0.051) 18.73(0.246)
UL-Clayton 205.11 −404.22 2.781(0.229) 2.598(0.431) 0.550(0.051)
UL-Gumbel 291.90 −577.80 1.741(0.080) 1.000(0.001) 2.599(0.699)
UL-Frank 238.44 −470.88 5.124(0.314) 1.001(0.051) 2.721(0.085)

UL-Gaussian 266.37 −526.73 0.789(0.012) 2.718(0.005) 1.001(0.001)

BAI & BFP

UPG-Clayton 205.35( 110.6) −404.71(−219.12) 0.003(0.001)(1.953(0.080)) 0.380(0.001) 0.247(0.001)
UPG-Gumbel 285.08(284.30) −564.16(−566.52) 1.886(0.076)( 1.968(0.072)) 0.0003(2.15) 1.026(2.869)
UPG-Frank 268.82(234.00) −531.64(−465.93) 4.064(0.362)(5.445(0.342)) 0.519(0.001) 0.188(0.001)

UPG-Gaussian 277.35(268.40) −548.70(−534.71) 0.889(0.007)(0.708(0.017)) 0.992(0.040) 18.50(0.016)
UL-Clayton 180.81 −355.62 2.564(0.196) 2.697(0.023) 0.550(0.001)
UL-Gumbel 285.01 −564.03 1.902(0.078) 7.616(0.909) 2.718(0.001)
UL-Frank 201.85 −397.69 4.244(0.292) 1.001(0.102) 2.721(0.081)

UL-Gaussian 270.89 −535.78 0.793(0.012) 2.717(0.036) 1.001(0.002)

BAI & WC

UPG-Clayton 369.83(333.20) −733.67(−664.36) 0.042(0.001)(3.066(0.183)) 0.895(0.001) 0.033(0.002)
UPG-Gumbel 410.60(348.00) −815.20(−693.97) 1.600(0.046)(2.212(0.082)) 0.005(0.001) 1.204(0.001)
UPG-Frank 386.81(370.60 ) −767.61(−739.24) 3.743(0.279)(7.660(0.420)) 0.014(0.001) 1.106(0.001)

UPG-Gaussian 425.21(411.20) −844.42(−820.33) 0.688(0.097)(0.809(0.013)) 0.431(0.392) 0.870(0.554)
UL-Clayton 379.13 −752.26 3.641(0.276) 1.909(0.081) 0.690(0.002)
UL-Gumbel 379.71 −753.41 1.945(0.062) 1.098(0.351) 2.718(0.002)
UL-Frank 387.54 −769.08 8.249(0.628) 1.145(0.203) 2.719(0.016)

UL-Gaussian 423.92 −841.84 0.819(0.038) 1.171(0.297) 4.757(0.231)

BFP & WC

UPG-Clayton 55.14( 17.65) −104.27(−33.29) 0.003(0.001)(0.670(0.049)) 0.784(0.002) 0.058(0.003)
UPG-Gumbel 64.59(64.15) −123.18(−126.30) 1.266(0.043)( 1.293(0.045)) 0.001(1.077) 19.51(1.459)
UPG-Frank 64.52(46.38 ) −123.04(−90.76) 1.332(0.342)( 2.062(0.275)) 0.765(0.008) 0.070(0.005)

UPG-Gaussian 68.53(66.07) −131.06(−130.13) 0.780(0.018)(0.399(0.037)) 0.981(0.180) 97.50(0.002)
UL-Clayton 33.10 −60.20 1.014(0.139) 2.719(0.001) 2.718(0.002)
UL-Gumbel 64.58 −123.15 1.266(0.044) 11.717(0.594) 2.710(0.159)
UL-Frank 35.51 −65.02 2.183(0.419) 2.747(0.260) 2.749(0.292)

UL-Gaussian 64.92 −123.85 0.503(0.030) 2.718(0.007) 1.000(0.001)

circumference (WC). A source can be assessed at the website: https://figshare.com/articles/dataset.
The summary statistics for the four measurements are presented in Table 2. Data were gathered from
437 women and 346 men between the ages 25 and 80 years, and their average age was approximately
49 years.

The widest circumference was in centimeters, and it has been converted to meters. Age is in years,
and BMI is in kg/m2. We calculated the BFP measurement as BFP = (1.39*BMI) + (0.16*Age) −
(10.34*S) −9, where S = 0 for men and S = 1 for women, and the BAI measurement was based
on a formula placed on the website: https://www.omnicalculator.com/health/bai. The four variables
consider the risk to human health, as mentioned by Sapporo and Gongs in (2020), who carry out
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Table 4: Cramer-von Mises statistics (p-value) for the chosen copula models

Clayton Gumbel Frank Gaussian
BMI & BAI 0.55(0.025) 0.09(0.609) 0.03(0.998) 0.04(0.986)
BMI & BFP 0.77(0.006) 0.15(0.335) 0.24(0.171) 0.14(0.401)
BMI & WC 1.07(0.001) 0.15(0.321) 0.11(0.531) 0.19(0.253)
BAI & BFP 0.70(0.005) 0.03(0.999) 0.12(0.876) 0.07(0.890)
BAI & WC 0.43(0.071) 0.34(0.080) 0.14(0.413) 0.11(0.580)
BFP & WC 0.48(0.019) 0.60(0.006) 0.71(0.020) 0.69(0.013)

UPG-Clayton UPG-Gumbel UPG-Frank UPG-Gaussian
BMI & BAI 0.45(0.542) 0.02(0.941) 0.04(0.929) 0.03(0.932)
BMI & BFP 0.51(0.494) 0.14(0.765) 0.16(0.758) 0.11(0.829)
BMI & WC 0.73(0.257) 0.09(0.827) 0.13(0.768) 0.18(0.720)
BAI & BFP 0.35(0.685) 0.03(0.923) 0.07(0.821) 0.04(0.896)
BAI & WC 0.50(0.480) 0.20(0.708) 0.23(0.699) 0.08(0.843)
BFP & WC 0.38(0.713) 0.28(0.741) 0.29(0.755) 0.24(0.782)

UL-Clayton UL-Gumbel UL-Frank UL-Gaussian
BMI & BAI 0.37(0.578) 0.02(0.916) 0.15(0.799) 0.04(0.927)
BMI & BFP 0.85(0.168) 0.14(0.754) 0.42(0.551) 0.13(0.804)
BMI & WC 0.79(0.276) 0.11(0.824) 0.41(0.537) 0.18(0.707)
BAI & BFP 0.54(0.508) 0.03(0.912) 0.34(0.606) 0.06(0.870)
BAI & WC 0.34(0.564) 0.20(0.690) 0.82(0.193) 0.09(0.830)
BFP & WC 0.68(0.440) 0.28(0.730) 0.62(0.451) 0.26(0.762)

similar work.
The scatter plots in Figure 4 show how anthropocentric variables are related. Here, the Kendall’s

tau values of the samples among each of the two selected variables are shown in Figure 4, as well.
The correlation matrix, for instance, shows that the highest tau value is 0.51 between BAI and WC
and the lowest tau value is 0.25 between BFP and WC.

Figure 5 gives an important sign for any lower or upper tail dependence that may help in assigning
a suitable copula. There appear to be upper and lower tail dependencies, as demonstrated in Figure 5,
and as a result, the UPG-distorted copula models look appropriate due to additional parameters and
may be flexible to improve the fit. To illustrate more, the UPG-Gaussian copula model will perform
better than the Clayton, Gumbel, and Frank copula models if there is upper and lower tail dependence
between BAI and WC.

The results of the distorted copula models are presented in Table 3, which include MPLE, AIC,
θ̂, â, and b̂. Here, we simulate 783 Clayton, Gumbel, Frank and Gaussian observations, and then, we
calculate the CvM test based on 1500 replicates. The Clayton copula model was not suitable for all
situations in Table 3, so its performance is the worst. Gumbel, Frank, and Gaussian provide a good fit
in terms of MPLE and AIC. The UPG-distorted copula models improve the fit in terms of MPLE and
AIC. They have the ability to improve parameter estimations; note that all standard errors are small.

Based on the applied data, though the UL-distorted models may not perform as well as the UPG-
distorted models, the UL-distorted copulas are anticipated to improve the model fit in terms of MPLE
and AIC more than the base copula models.

The new distorted model of the Clayton copula successfully fits the data for all the dependent
situations in Table 3, though UPG-Gumbel, UPG-Frank, and UPG-Gaussian continue to maintain
their best overall performance model positions. As shown in Table 4, no distorted copula model would
be rejected, as far as the CvM statistical test and its p-values are concerned. Table 5 summarizes the
best copula models for each situation among two anthropometric measurements. Additionally, the
values of Kendall’s tau and coefficients of the upper tail dependence are calculated and reported in
Table 5. Furthermore, the values and coefficients between the base and distorted models are close to
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Table 5: Summary of the best base or distorted copula model with its Kendall’s tau value and its coefficient of
upper tail dependence

Good distorted (or base) model τ̂T (τ̂) λ̂T,U (λ̂U )
BMI & BAI UPG-Gumbel(Frank) 0.510(0.292) 0.722(–)
BMI & BFP UPG-Gaussian(Gaussian) 0.516(0.466) –(–)
BMI & WC UPG-Gumbel(Gumbel) 0.527(0.505) 0.454(0.590)
BAI & BFP UPG-Gumbel(Gumbel) 0.644(0.492) 0.556(0.578)
BAI & WC UPG-Gaussian(Gaussian) 0.586(0.510) –(–)
BFP & WC UPG-Gaussian(None) 0.220(–) –(–)

each other, and they reflect the values of Kendall’s tau shown in Figure 4.

7. Concluding remarks

Herein, we define the associate distortion that is linked to the conversion function, and then, it is used
to construct a UPG distortion with two parameters. Additionally, a global distorted distribution func-
tion is used to construct a new family of the UPG-distorted function. New distorted bivariate copulas,
namely, UPG-Gumbel, UPG-Clayton, UPG-Frank, and UPG-Gaussian, are explicitly expressed and
given on the basis that the base copulas are, respectively, Gumbel, Clayton, Frank, and Gaussian. We
look at the effect of the countermonotonic or comonotonic copulas on the distorted copula. For any
base copula, the limiting cases in parameters for the family of the UPG-distorted copulas are carefully
examined. The tail behaviors are investigated for the UPG-distorted copula. We derive Kendall’s tau
formulas for UPG-Clayton, UPG-Gumbel, and UPG-Frank. Furthermore, these formulas are used to
measure dependence in proposed copula models and examine the order of concordance. Based on
the results of the application, the new distorted bivariate copula models are the best overall relative
to their corresponding base bivariate copula models. In future research, we will attempt to extend
our base and distorted copula models in the Application section to a high- or 4-dimensional base, and
then, we can compare their performances. This paper would allow for a reasonable extension of this
study to n-dimensional distorted copulas.
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