DOI QR코드

DOI QR Code

Al 함량이 다른 PAC를 이용한 응집 조건 별 인 제거효율 평가

Evaluation of Phosphorus Removal Efficiency at Various Coagulation Conditions Using Polyaluminum Chloride with Different Al Contents

  • 최정학 (부산가톨릭대학교 환경공학과) ;
  • 윤건곤 (부산가톨릭대학교 청정시스템공학과) ;
  • 이창한 (부산가톨릭대학교 환경행정학과)
  • Jeong-Hak Choi (Department of Environmental Engineering, Catholic University of Pusan) ;
  • Geon-Gon Yoon (Department of Green Process System Engineering, Catholic University of Pusan) ;
  • Chang-Han Lee (Department of Environmental Administration, Catholic University of Pusan)
  • 투고 : 2023.10.13
  • 심사 : 2023.10.25
  • 발행 : 2023.10.31

초록

In this study, lab-scale phosphorus coagulation/precipitation experiments were performed using three types of polyaluminum chloride (PAC) with different Al contents (10%, 12%, and 17%). The PO4-P removal efficiencies at various operating conditions, such as initial PO4-P concentration, initial pH, and Al/P molar ratio, were evaluated, and correlations among the operating factors affecting phosphorus coagulation/precipitation with PAC were derived to optimize the process efficiency. When the initial PO4-P concentration was 0.065 and 0.161 mmol P/L under an initial pH of 8-10, the optimal PAC dose was 0.126-0.378 and 0.189-0.667 mmol Al/L, respectively. Under these conditions, the Al/P molar ratio was 2.16-6.18 and 1.28-4.30, respectively, and the PO4-P removal efficiency was in the range of 40.2-92.5%. When the Al/P molar ratio was 2 or less under an initial pH condition of 6-8, the PO4-P removal efficiency was approximately ≤40% owing to insufficient Al3+ ions. However, when the Al/P molar ratio is 3-5, the PO4-P removal efficiency improved to approximately 80-90%. Thus, the optimal Al/P molar ratio to achieve a PO4-P removal efficiency of over 90% was determined to be approximately 4 in the PO4-P coagulation/precipitation process using PAC.

키워드

과제정보

본 논문은 2023년 부산가톨릭대학교 교내학술연구비 및 중소기업기술정보진흥원에서 시행한 2022년 성과공유형 공통기술개발사업 공통기술R&D(2단계) 사업임(RS-2022-00187244)의 지원을 받아 수행되었으며, 이에 감사드립니다.

참고문헌

  1. Chen, Y., Wu, Y., Wang, D., Li, H., Wang, Q., Liu, Y., Peng, L., Yang, Q., Li, X., Zeng, G., Chen, Y., 2018, Understanding the mechanisms of how poly aluminium chloride inhibits short-chain fatty acids production from anaerobic fermentation of waste activated sludge, Chem. Eng. J., 334, 1351-1360.  https://doi.org/10.1016/j.cej.2017.11.064
  2. Eduah, J. O., Nartey, E. K., Abekoe, M. K., Henriksen, S. W., Andersen, M. N., 2020, Mechanism of orthophosphate (PO4-P) adsorption onto different biochars, Environ. Technol. Innov., 17, 100572. 
  3. Ge, J., Meng, X., Song, Y., Terracciano, A., 2018, Effect of phosphate releasing in activated sludge on phosphorus removal from municipal wastewater, J. Environ. Sci., 67, 216-223.  https://doi.org/10.1016/j.jes.2017.09.004
  4. Han, H. J., Moon, B. H., 2012, Effect of Rapid Mixing Intensity and Coagulant Dosages on Phosphorus Removal by Coagulation, Clean Technol., 18, 404-409.  https://doi.org/10.7464/ksct.2012.18.4.404
  5. Han, S. W., Lee, C. H., Lee, J. K., Kang, L, S., 2012, Changes in the Removal Efficiency of Total Phosphorus by the Basicity of Al(III) Coagulant, J. Korean Soc. Water Wastewater, 26, 229-236.  https://doi.org/10.11001/jksww.2012.26.2.229
  6. He, W., Xie, Z., Lu, W., Huang, M., Ma, J., 2019, Comparative analysis on floc growth behaviors during ballasted flocculation by using aluminum sulphate (AS) and polyaluminum chloride (PACl) as coagulants, Sep. Purif. Technol., 213, 176-185.  https://doi.org/10.1016/j.seppur.2018.12.043
  7. Hu, K., Li, W., Mu, H., Ren, S., Zhu, H., Zeng, K., Wang, B., Liang, J., Zhang, Q., Yang, L., Zhao, W., Xiao, J., 2023, In-situ anaerobic treatment removes the passivation layer of sponge iron to restore the nitrogen and phosphorus removal performance of SBR, Process Saf. Environ. Prot., 174, 79-94.  https://doi.org/10.1016/j.psep.2023.04.005
  8. Jeon, B. S., Han, J., Kim, S. K., Ahn, J. H., Oh, H. C., Park, H. D., 2015, An Overview of problems cyanotoxins produced by cyanobacteria and the solutions thereby, J. Korean Soc. Environ. Eng., 37, 657-667.  https://doi.org/10.4491/KSEE.2015.37.12.657
  9. Jung, D. G., Kim, S. D., Kwon, S. Y., Lee, J. Y., Kim, Y. S., Lee, J., Kim, J. K., Kim, S. W., Kong, S. H., Jung, D., 2020, Development of a portable Total-phosphorus monitoring system for preventing eutrophication in advance, J. Sens. Sci. Technol., 29, 342-347.  https://doi.org/10.46670/JSST.2020.29.5.342
  10. Kajjumba, G. W., Marti, E. J., 2022, A Review of the application of cerium and lanthanum in phosphorus removal during wastewater treatment: Characteristics, mechanism, and recovery, Chemosphere, 309, 136462. 
  11. Kim, J. O., Chung, J., 2014, Implementing chemical precipitation as a pretreatment for phosphorus removal in membrane bioreactor-based municipal wastewater treatment plants, KSCE J. Civil Eng., 18, 956-963.  https://doi.org/10.1007/s12205-014-0070-9
  12. Kim, M. K., Moon, B., Kim, T. K., Zoh, K. D., 2015, A Study on production & removal of microcystin, taste & odor compounds from algal bloom in the water treatment processes, The Korean Journal of Public Health, 52, 33-42. 
  13. Lee, B. H., Park, J. H., Cha, H. Y., Maeng, S. K., Song, K. G., 2012, Effects of dolomite addition on phosphorus removal by chemical coagulation of secondary treated effluent, J. Korean Soc. Water Wastewater, 26, 443-451.  https://doi.org/10.11001/jksww.2012.26.3.443
  14. Lee, S. K., Park, M. S., Yeon, S. J., Park, D. H., 2016, Optimization of chemical precipitation for phosphate removal from domestic wastewater, J. Korean Soc. Water Wastewater, 30, 663-671.  https://doi.org/10.11001/jksww.2016.30.6.663
  15. Moon, Y. E., 2021, A Study on the Spatio-temporal distribution characteristics of phytoplankton by water environment factors in Okjung Reservoir, The Journal of Jeonbuk Studies, 3, 235-280. 
  16. Park, H. K., Jung, E. Y., Son, H. J., Choi, J. T., 2017, Reduction of Blue-green Algae and Its By-products using Intake of Deep Water in Summer, J. Environ. Sci. Intern., 26, 393-399.  https://doi.org/10.5322/JESI.2017.26.3.393
  17. Park, H. S., 2011, Phosphorus removal effective from AI(III) coagulant, J. Korea Society of Environmental Administration, 17, 43-48. 
  18. Park, W. C., Lee, M. A., Sung, I. W., 2014, Phosphorus removal from advanced wastewater treatment process using PAC, J. Korean Soc. Environ. Eng., 36, 96-102.  https://doi.org/10.4491/KSEE.2014.36.2.96
  19. Sarvajayakesavalu, S., Lu, Y., Withers, P. J. A., Pavinato, P. S., Pan, G., Chareonsudjai, P., 2018. Phosphorus recovery: a need for an integrated approach. Ecosyst. Health Sust., 4, 48-57.  https://doi.org/10.1080/20964129.2018.1460122
  20. Son, S. M., Jutidamrongphan, W., Park, K. Y., 2012, Addition of coagulants for phosphorus removal from Combined Sewer Overflows (CSOs), J. Korean Soc. Water Wastewater, 26(2), 295-302.  https://doi.org/10.11001/jksww.2012.26.2.295
  21. Toor, U. A., Shin, H., Kim, D. J., 2019, Mechanistic insights into nature of complexation between aluminum and phosphates in polyaluminum chloride treated sludge for sustainable phosphorus recovery, J. Ind. Eng. Chem., 71, 425-434.  https://doi.org/10.1016/j.jiec.2018.11.055
  22. Tran, N., Drogui, P., Blais, J. F., Mercier, G., 2012, Phosphorus removal from spiked municipal wastewater using either electrochemical coagulation or chemical coagulation as tertiary treatment, Sep. Purif. Technol., 95, 16-25.  https://doi.org/10.1016/j.seppur.2012.04.014
  23. Wen, Y., Zheng, Z., Wang, S., Han, T., Yang, W., Jonsson, P. G., 2021, Magnetic bio-activated carbons production using different process parameters for phosphorus removal from artificially prepared phosphorus-rich and domestic wastewater, Chemosphere, 271, 129561. 
  24. Woo, C. Y., Yun, S. L., Kim, S. K., Lee, W., 2020, Occurrence of harmful Blue-green algae at algae alert system and water quality forecast system sites in Daegu and Gyeongsangbuk-do between 2012 and 2019, J. Korean Soc. Environ. Eng., 42, 664-673.  https://doi.org/10.4491/KSEE.2020.42.12.664
  25. Yang, S., Yang, F., Fu, Z., Wang, T., Lei, R., 2010, Simultaneous nitrogen and phosphorus removal by a novel sequencing batch moving bed membrane bioreactor for wastewater treatment, J. Hazard. Mater., 175, 551-557.  https://doi.org/10.1016/j.jhazmat.2009.10.040
  26. Yun S. Y., Ryu, J. N., Oh, J. I., 2012, T-P removal efficiency according to coagulant dosage and operating cost analysis, J. Korean Soc. Environ. Eng., 34, 549-556. https://doi.org/10.4491/KSEE.2012.34.8.549