DOI QR코드

DOI QR Code

강봉으로 보강된 RC 사각기둥의 내진 성능 평가

Seismic Capacity Evaluation of Rectangular RC Columns Strengthened with Steel Bars

  • 이동민 (경북대학교 토목공학과 ) ;
  • 이성철 (경북대학교 토목공학과) ;
  • 신동호 (대우건설 주택건축연구팀 ) ;
  • 오창국 (국민대학교 건설시스템공학부)
  • Dongmin Lee (Department of Civil Engineering, Kyungpook National University) ;
  • Seong-Cheol Lee (Department of Civil Engineering, Kyungpook National University) ;
  • Dong-Ho Shin (Housing Architectural Research Team, Daewoo E&C) ;
  • Chang Kook Oh (School of Civil and Environmental Engineering, Kookmin University)
  • 투고 : 2023.06.08
  • 심사 : 2023.09.04
  • 발행 : 2023.10.31

초록

최근 국내에서 연간 지진 발생 횟수가 꾸준히 증가함에 따라 공공시설물에 대한 내진 보강의 필요성이 더욱 대두되고 있다. 이 연구에서는 사각 단면을 가진 철근콘크리트 기둥에서 강봉보강의 유무에 따른 내진 성능 개선 효과를 분석하기 위해 비선형 유한요소해석을 수행하였으며, 검증을 위해 구조실험결과와 비교하였다. 분석 결과, 이 연구에서 수행한 유한요소해석이 실제 강봉보강공법을 적용한 철근콘크리트 기둥의 구조 거동을 합리적으로 잘 묘사하는 것으로 나타났다. 또한, 해석 및 실험 모두 강봉보강공법 적용으로 인해 파괴모드가 취성파괴에서 연성파괴로 전환되었으며, 강도와 연성도 모두 증가하는 것으로 나타났다. 따라서, 강봉보강공법 적용을 통해 기존 철근콘크리트 기둥의 내진 성능을 효과적으로 증진시킬 수 있는 것으로 판단된다. 이 연구의 주요 결과는 향후 설계 방안 마련 등 관련 연구에 유용할 것으로 기대된다.

With the steady increase in the annual number of earthquakes in South Korea, the need to apply seismic reinforcement on public facilities has recently increased. To reinforce seismic capacity, spaced full-column-height steel bars are attached to column faces. In this study, nonlinear finite element analysis was conducted to analyze the effect of external reinforcement steel bars on the seismic capacity of RC columns with a square or rectangular cross-section. For verification, the analysis results were compared with test results. Results showed that the finite element analysis reasonably predicted the actual structural behavior of RC columns with steel bars. In addition, both the analysis and the test results showed that the failure mode was converted from brittle failure to ductile fracture, owing to the external reinforcement steel bars. Both loading capacity and ductility were increased as well. Therefore, the external reinforcement steel bar can effectively enhance the seismic capacity of existing RC columns. This study is expected to contribute to relevant research areas such as the development of design methods.

키워드

과제정보

이 논문은 정부(과학기술정보통신부) 재원 한국연구재단(NRF-2020R1I1A3073831)의 지원으로 수행되었으며, 이에 감사드립니다.

참고문헌

  1. Bentz, E.C. (2005) Explaining the Riddle of Tension Stiffening Models for Shear Panel Experiments, J. Struct. Eng., 131(9), pp.1422~1425. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:9(1422)
  2. Campione, G., Miraglia, N., Papia, M. (2004) Strength and Strain Enhancements of Concrete Columns Confined with FRP Sheets, Struct. Eng. & Mech., 18(6), pp.769~790. https://doi.org/10.12989/sem.2004.18.6.769
  3. Choi, Y.-B., Lee, S.-C. (2016) Nonlinear Finite Element Analysis for RC Shear Wall with an Opening Considering Rebar Development Length, J. Comput. Struct. Eng. Inst. Korea, 29(6), pp.547~554. (in Korean) https://doi.org/10.7734/COSEIK.2016.29.6.547
  4. Daewoo Institute of Construction Technology and Jeongho Co. Ltd (2018) Report of Seismic Reinforcement Test for RC Columns (NBR Method), 19. (in Korean)
  5. He, A., Cai, J., Chen, Q.J., Liu, X., Huang, P., Tang, X.L. (2018) Seismic behaviour of Steel-Jacket Retrofitted Reinforced Concrete Columns with Recycled Aggregate Concrete, Constr. & Build. Mater., 158, pp.624~639. https://doi.org/10.1016/j.conbuildmat.2017.10.053
  6. Hognes tad, E., Hans on, N.W., McHenry, D. (1955) Concrete Stress Distribution in Ultimate Strength Design, ACI J. Proc., 52(12), pp.455~480.
  7. Isojeh, B., El-Zeghayar, M., Vecchio, F.J. (2019) Numerical Analysis of Reinforced Concrete and Steel-Fiber Concrete Elements under Fatigue Loading, J. Struct. Eng., 145(11), p.04019126.
  8. Korea Concrete Institute (2017) Korea Structural Concretre Design Code, 656. (in Korean)
  9. Kupfer, H., Hilsdorf, H.K., Rusch, H. (1969) Behavior of Concrete under Biaxial Stresses, J. proc., 66(8), pp.656~666.
  10. Kwon, G.-J., Park, J.-W., Yoon, S.-G., Kim, T.-J., Lee, J.-Y. (2012) Behavior of Reinforced Concrete Inclined Column-Beam Joints, J. Korea Concr. Inst., 24(2), pp.147~156. (in Korean) https://doi.org/10.4334/JKCI.2012.24.2.147
  11. Lee, S.-C. (2020) Shear Behavior Model on Crack Surface Subjected to Cyclic Load, J. Korea Concr. Inst., 32(3), pp.259~266. (in Korean) https://doi.org/10.4334/JKCI.2020.32.3.259
  12. Lee, S.-C., Cho, J.-Y., Vecchio, F.J. (2011) Model for Post-Yield Tension Stiffening and Rebar Rupture in Concrete Members, Eng. Struct., 33(5), pp.1723~1733. https://doi.org/10.1016/j.engstruct.2011.02.009
  13. Les tuzzi, P., Bachmann, H. (2007) Displacement Ductility and Energy Assessment from Shaking Table Tests on RC Structural Walls, Eng. Struct., 29(8), pp.1708~1721. https://doi.org/10.1016/j.engstruct.2006.09.009
  14. Mander, J.B., Priestley, M.J.N., Park, R. (1988) Theoretical Stress-Strain Model for Confined Concrete, J. Struct. Eng., 114(8), pp.1804~1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  15. Munoz, W., Salenikovich, A., Mohammad, M., Quenneville, P. (2008) Determination of Yield Point and Ductility of Timber Assemblies: in Search for a Harmonised Approach, Proc. Meeting 41 of CIB-W18, St. Andrews, NB, Canada.
  16. Park, R., Priestley M.J., Gill, W.D. (1982) Ductility of Square-Confined Concrete Columns, J. Struct. Div. ASCI, 108(4), pp.929~950. https://doi.org/10.1061/JSDEAG.0005933
  17. Richart, F.E., Brandtzaeg, A., Brown, R.L. (1928) A Study of the Failure of Concrete under Combined Compressive Stresses, Eng. Exp. Station Bull., No. 185, University of Illinois, Urbana., 26(12), p.104.
  18. Seckin, M. (1981) Hysteretic Behaviour of Cast-in-Place Exterior Beam-Column-Slab Subassemblies, Dept. Civil Eng., Toronto, ON, Canada, 266.
  19. Vecchio, F.J. (2000) Disturbed Stress Field Model for Reinforced Concrete: Formulation, J. Struct. Eng., 126(9), pp.1070~1077. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1070)
  20. Vecchio, F.J. (2001) Disturbed Stress Field Model for Reinforced Concrete: Implementation, J. Struct. Eng., 127(1), pp.12~20. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:1(12)
  21. Vecchio, F.J., Collins, M.P. (1986) The Modified Compression Field Theory for Reinforced Concrete Elements Subjected to Shear, ACI J. Proc., 83(2), pp.219~231.
  22. Vecchio, F.J., Collins, M.P. (1993) Compression Response of Cracked Reinforced Concrete, J. Struct. Eng., 119(12), pp.3590~3610. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:12(3590)
  23. Wong, P.S., Vecchio, F.J., Trommels, H. (2013) VecTor2 and FormWorks User's Manual, Technical Report, Dept. of Civil Engineering, University of Toronto, Toronto, ON, Canada, 318.
  24. Xu, C.X., Peng, S., Deng, J., Wan, C. (2018) Study on Seismic Behavior of Encased Steel Jacket-Strengthened Earthquake-Damaged Composite Steel-Concrete Columns, J. Build. Eng., 17, pp.154~166. https://doi.org/10.1016/j.jobe.2018.02.010
  25. Ye, L.P., Zhang, K., Zhao, S.H., Feng, P. (2003) Experimental Study on Seismic Strengthening of RC Columns with Wrapped CFRP Sheets, Constr. & Build. Mater., 17(6-7), pp.499~506. https://doi.org/10.1016/S0950-0618(03)00047-3