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The share of the population that is aging is growing rapidly. In 
an aging society, technologies and interventions that delay the 
aging process are of great interest. Dietary restriction (DR) is 
the most reproducible and effective nutritional intervention 
tested to date for delaying the aging process and prolonging 
the health span in animal models. Preventive effects of DR on 
age-related diseases have also been reported in human. In ad-
dition, highly conserved signaling pathways from small animal 
models to human mediate the effects of DR. Recent evidence 
has shown that the immune system is closely related to the 
effects of DR, and functions as a major mechanism of DR in 
healthy aging. This review discusses the effects of DR in de-
laying aging and preventing age-related diseases in animal, 
including human, and introduces the molecular mechanisms 
that mediate these effects. In addition, it reports scientific find-
ings on the relationship between the immune system and DR- 
induced longevity. The review highlights the role of immunity 
as a potential mediator of the effects of DR on longevity, and 
provides insights into healthy aging in human. [BMB Reports 
2023; 56(10): 537-544]

INTRODUCTION

Aging is a leading factor in the gradual decline of biological 
functions and an organism’s ability to adapt to metabolic stresses; 
thus, aging is a major cause of many diseases. Therefore, inter-
ventions that slow down the aging process are thought to 
delay or prevent chronic diseases, and improve the quality of 
life of the elderly. 

A major symptom of aging is a decline in immune function, 
which is associated with the development of various age-re-
lated diseases (1). The immune system is classified into two 
types: innate and adaptive (2). The body’s first line of defense 
is the innate immune system that detects external invasion by 

viruses and bacteria and the associated cell damage. The second 
line of defense in the human body is adaptive immune cells, 
and they can remember external intruders once recognized, 
and block secondary intrusions to protect the host. Immuno-
senescence (3), the aging of the immune system, is a major 
cause of death due to infectious diseases, such as pneumonia 
and sepsis, in the elderly. Mortality data from the COVID-19 
pandemic also indicate that the elderly individual is highly 
vulnerable to infectious diseases (4). Therefore, it is urgent to 
develop an effective method to alleviate the decline in immune 
function to delay aging and maintain a healthy life in an aging 
society.

Dietary restriction (DR) refers to a reduction in the intake of 
specific or total nutrients without causing malnutrition. This is 
often referred to as limiting calorie intake or calorie restriction 
(CR). Various DR recipes such as low in calories, fasting, 
fasting-mimicking diet (FMD), and intermittent fasting are being 
used to study the biological effects of DR and its mechanism of 
action (5-7). DR reduces the incidence of age-related diseases 
(8-14), and prolongs the lifespan of animals (15-17). Further-
more, DR such as caloric restriction and fasting can impact 
stem cell function and regulate tissue homeostasis and regene-
ration (5). In addition, signaling pathways that mediate DR- 
induced longevity are conserved in the animal kingdom. There-
fore, DR is considered as a reproducible and effective anti- 
aging nutritional intervention. Recently, scientific findings re-
ported that the anti-aging effects of DR are closely related to 
the regulation of immunity (8, 18-20). DR can activate or 
regulate the homeostasis of immune function, and DR prolongs 
the longevity of animals through regulation of the immune 
function.

This review provides a brief overview of the effects of DR on 
longevity and the prevention of the onset of diseases in the 
animal kingdom. As the most representative and distinct path-
ways that mediate DR effects, insulin/IGF1 signaling (IIS) and 
target of rapamycin (TOR) signaling pathways are described. In 
addition, the relationship between anti-aging regulation of DR 
and immune function is discussed. This review suggests the 
potential that studies of homeostatic regulation of immune 
function via DR may lead to the development of effective 
anti-aging intervention methods.
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Fig. 1. DR effects in animals. DR prevents age-related diseases in various tissues including brain, heart, and muscle in animals and humans. 
Furthermore, DR increases the lifespan of animals. An impact of DR on longevity has not yet been confirmed in humans.

DIETARY RESTRICTION (DR) EFFECTS ON 
DELAYING AGING AND/OR PREVENTING 
AGE-ASSOCIATED DISEASES

DR effects on longevity
DR is the most widely studied and reproducible intervention 
that is known to extend the lifespan of organisms. Here, we 
describe the effects of DR on the longevity of C. elegans, 
mouse, and monkey. 

C. elegans is a useful model organism for studying the 
genetic and non-genetic interventions that control aging and 
longevity (21). The physiological aging characteristics of C. 
elegans are very similar to those of human, and it is the first 
multicellular eukaryote whose genome has been completely 
sequenced. Thus, C. elegans has been widely used to study 
the mechanisms underlying aging and age-related diseases. 
The effect of DR on longevity at the organism level has been 
demonstrated in C. elegans (16). Two main approaches have 
been used to analyze the effects of DR in C. elegans. The first 
was to reduce nematode food intake by reducing the amount 
of food provided (22). The second was to analyze the effects of 
DR using mutant worms with low food intake ability (23). In 
both methods, the lifespan of the nematodes was greatly in-
creased. In addition, genes and signaling pathways that re-
gulate DR-induced longevity have been identified in C. elegans 
(23), and these are well-conserved in other animals (24). 

The first report on the effect of DR on longevity was pub-
lished in 1935 by researchers at Cornell University using mouse 
(15), where the researchers found that the lifespans of the mice 
could be extended by 33% by feeding them a very low-calorie 
diet. Furthermore, DR can extend the average and maximal 

lifespan of mice even when it is started in middle age (12 months) 
(25). Recently, studies on DR methods that maximize the effects 
of lifespan extension have been conducted in mouse. To this 
end, mice were tested using more sophisticated DR methods 
by considering daily fasting intervals or feeding cycles. It has 
been reported that DR treatment at night, when mice are most 
active, is very effective at prolonging their lifespan (26).

If DR can extend animal lifespans, can it extend human life-
spans as well? To answer this question, the effect of DR was 
confirmed in rhesus monkey, which is the closest model or-
ganism to human. The rhesus monkey genome shares approxi-
mately 93% sequence identity with the human genome, making 
it an excellent research animal model for human aging (27, 
28). Studies at the National Institute on Aging (NIA) (29) and 
the University of Wisconsin Madison (UW) (17, 30) found the 
effects of DR on the longevity of monkey. Interestingly, in the 
UW study, monkeys subjected to DR had significantly extended 
lifespans, compared to those of the control monkeys (17, 30). 
However, the NIA reported the opposite effect. The monkeys 
subjected to DR in the NIA study showed no improvement in 
their lifespan. Thus, until now, the effect of DR on the longe-
vity of monkeys has remained an issue of debate. This discre-
pancy is probably due to differences in diet composition, feed-
ing practices, and the heterogeneous genetic background of 
the monkeys in each study (31). Therefore, it should be em-
phasized that more sophisticated and consistent experimental 
methods are needed to obtain more accurate experimental 
results on DR-induced longevity in rhesus monkey. 

In human, there are no results yet that evaluate the longevity 
effects of DR. While the lifespan extension effect of DR has 
been confirmed in small animals and monkeys, and will be 
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discussed further, it has been confirmed that DR can reduce 
the incidence of age-related diseases in human. Thus, the pos-
sibility of lifespan extension by DR remains a possibility in 
human (Fig. 1).

DR and the prevention of age-related diseases
DR both prolongs the longevity of organisms, and reduces the 
incidence of age-related diseases. Here, the effects of DR in 
preventing age-related diseases in C. elegans, mouse, monkey, 
and human are presented. 

In C. elegans, DR has been shown to alleviate geriatric dis-
eases, such as sarcopenia. Sarcopenia is the age-related pro-
gressive loss of muscle mass and strength (32). During aging, 
muscle activity declines in C. elegans, and DR can prevent 
age-associated decline in muscle activity (8). DR prevents mito-
chondrial damage and fragmentation of mitochondrial networks 
in body wall muscles of aged C. elegans (8). In addition, DR 
confers protection against polyglutamine proteotoxicity (9) in a 
nematode model, in which a tract of 35 consecutive glutamine 
residues was fused to YFP (Q35YFP), and expressed in the body 
wall muscles (10). 

In mouse, DR prevents age-related diseases, leading to pro-
longed good health and survival. Cancer is the main cause of 
death, accounting for 70-80% of all rodent deaths. Malnutrition- 
free DR has been shown to prevent or delay the onset of 
cancer, chronic kidney disease, cardiomyopathy, diabetes, and 
autoimmune and respiratory diseases in rodent (11-13). The 
incidence of cancer and multiple sclerosis is reduced by 
various methods of inducing DR, such as fasting or FMD (6, 
33). Furthermore, DR is effective at reducing beta-amyloid de-
position in the brains of mice with neurodegenerative diseases, 
such as Alzheimer’s disease, Parkinson’s disease, Huntington’s 
disease, and stroke (34, 35). 

In primate, the positive effects of DR-induced delay in age- 
related diseases have been reported by both the NIA (29) and 
UW (17, 30). Reduced incidences of various age-related dis-
eases, such as cancer, cardiovascular disease, obesity, sarco-
penia, and diabetes, have been reported in monkeys subjected 
to DR (14, 30). In particular, studies from both groups have 
confirmed that monkeys subjected to DR had a lower inci-
dence of cancer than the controls, thus confirming that tumor 
suppression is a hallmark of DR. Researchers at the UW have 
shown that DR can reduce the incidence of cardiovascular 
disease and the incidence of insulin resistance, while the NIA 
has reported reduction of the incidence of diabetes. 

The beneficial effects of DR have also been observed in 
human. In human, according to the available information, the 
effects of DR on various age-related diseases are similar to the 
positive effects of DR seen in experimental animals. Among 
the data on the effects of DR on human health, data on the 
elderly mortality rate in Okinawa (Japan) are very valuable. 
During the 1940s-1960s, residents of Okinawa Island consumed 
significantly fewer daily calories (1,785 kcal/day [d]) than those 
living in the United States (2,980 kcal/d) or mainland Japan 

(2,068 kcal/d) (36), and older people (aged 65+ years) on 
Okinawa Island had significantly lower mortality rates from 
coronary heart disease or cancer than those living in mainland 
Japan or the United States (37). These data indicate an asso-
ciation between DR and reduction of human adult diseases. As 
another example, the Calorie Restriction (CR) Society consists 
of volunteers consuming approximately 1,800 kcal/d, i.e., similar 
to the prior daily calorie intake of the residents on Okinawa 
Island, for an average of 6.5 years (38). At 1,800 kcal/d, there 
was better left ventricular diastolic function than for age- and 
sex-matched controls (39), and a lower risk of atherosclerosis 
and hypertension (40). Furthermore, the low-calorie groups main-
tained lower levels of systolic and diastolic blood pressure 
than the control group, and the levels of inflammatory markers 
(e.g., C-reactive protein, tumor necrosis factor-α, and interleu-
kin-6) were also lower than those in the control group (39-41). 
The results of the Comprehensive Assessment of the Long-Term 
Effects of Reducing Energy Intake (CALERIE) study, which in-
volved a 25% calorie restriction for just two years, also con-
firmed that DR provides multiple benefits for non-obese people. 
The CALERIE study showed positive health-promoting effects, 
including reduced inflammatory markers and cardiac metabolic 
risk factors (42, 43). Although DR has many health benefits, it 
can also cause adverse side effects, such as decreased bone 
mineral density (44). Therefore, a longer duration and larger 
cohort study will be needed to develop a DR recipe that can 
have a positive impact on human health (Fig. 1).

SIGNALING PATHWAYS MEDIATING DR EFFECTS ON 
LONGEVITY

IIS pathway
Small animals with short lifespans and well-conserved genetic 
functions have provided genetic information on the mechanisms 
of aging. Regulation of organismal aging by the IIS pathway 
was first reported in C. elegans (45). Since then, the control of 
lifespan by the IIS pathway has been confirmed in other 
animals, such as Drosophila and mouse (46). The forkhead 
transcription factor DAF-16 is the primary target of the IIS 
pathway. The IIS pathway retains DAF-16 in the cytoplasm, 
and inactivates it by phosphorylation. However, mutations in 
genes of the IIS pathway induce dephosphorylation of DAF-16, 
which then translocates to the nucleus and modulates the 
expression of various lifespan-regulating genes (47), thereby 
increasing the lifespan of C. elegans. The IIS signaling pathway 
is involved in DR-induced lifespan extension. DAF-16 is re-
quired for longevity under certain conditions, such as solid DR 
(sDR) and intermittent fasting (IF) (7, 22). However, in some 
studies, DAF-16 was not found to be required for longevity in 
other DR recipes (48-50). In addition, IIS signaling pathway is 
necessary for lifespan extension by intermittent fasting in C. 
elegans (7).

In mouse, similar to in C. elegans, mutations in genes in the 
IIS pathway increase lifespan. The insulin receptor substrate 
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(IRS) mutant mouse has a longer lifespan than control mice. 
The lifespan of IRS1−/− (51) and IRS2+/− mice (52) increased 
by 18%, and IRS2+/− and IRS2−/− in brain correlated with 18 
and 14% lifespan extension, respectively, compared to control 
mice (52). Furthermore, mutant mice with low IGF-1 levels 
have longer lifespans than control mice. GH receptor-knockout 
(GHR-KO) mice with low IGF-1 levels live 38-55% longer than 
control mice (53). IGF-1 receptor heterozygous knockout mice 
(IGF-1R+/−) also have a very low level of serum IGF-1 and a 
longer lifespan than that of control mice (54-57). In mouse, 
intermittent fasting reduces IGF-1 production (58) and fasting 
reduces growth hormone (GH) and IGF-1 levels (59), suggest-
ing that IIS plays an important role in DR-induced lifespan 
extension and the delay of age-related diseases. 

In human, the effect of corresponding mutations in IIS on 
longevity remains controversial. In the Itabaianinha cohort 
(more than 100 humans) in Brazil, a homozygous GH-releasing 
hormone receptor (GHRHR) mutation that failed to secrete GH 
correlated with a normal lifespan, and mortality from cancer 
was similar to that of the general population group (60). How-
ever, patients with Laron syndrome in Ecuador, with homozy-
gous mutations in the GHR or GH-induced intracellular 
signaling molecules (61), had a reduction in cancer-related 
deaths (62). Protein intake is a key determinant of circulating 
IGF-1 levels in human. Total and free IGF-1 concentrations are 
significantly lower in individuals with moderate protein restric-
tion (63). Reducing protein intake from an average of 1.67 to 
0.95 g·kg−1 of body weight per day for three weeks in six 
volunteers practicing DR resulted in a reduction in serum 
IGF-1 levels from 194 to 152 ng·ml−1. Therefore, it is possible 
that DR by reducing protein intake could help maintain 
healthy aging through the inhibition of IIS.

TOR signaling pathway
TOR is a conserved serine/threonine kinase that integrates 
nutritional information from the environment to regulate growth 
in multiple species (64). Thus, a decrease in TOR signaling 
indicates a decrease in the nutrient status of the environment, 
like DR, and reduced TOR signaling extends the lifespan of 
animals. 

In C. elegans, reduced TOR signaling increases longevity 
(65). Reducing bacterial food levels in the diet or eat-2, a 
DR-mimicking mutant strain that eats less than the wild-type 
strain, resulted in an increased lifespan (7, 50, 66). However, 
inhibition of the TOR signaling pathway in eat-2 mutant strains 
did not result in further lifespan extension (50, 67), suggesting 
that TOR inhibition mediates the effect of DR on longevity in 
C. elegans (68, 69).

Reduced TORC1 signaling extends the lifespan in mouse. 
S6K1 is a direct TORC1 substrate, and its phosphorylation and 
activity are modulated by TORC1. A cohort of S6K1-deficient 
female mice exhibited a 19% increase in lifespan, compared 
with the wild-type control group (70). However, S6K1-deficient 
male mice do not exhibit a significant increase in longevity 

(70). Exposure to the mTOR pathway inhibitor rapamycin 
resulted in significant median and maximal lifespan extension 
in both male and female mice (males 9%, females 13%) (71). 
In addition, if rapamycin treatment was started when the mice 
had reached middle age (270 d) or old age (600 d), the 
lifespan of the mice increased under both conditions (71). 
Another TOR inhibitor, metformin, downregulates TORC1 acti-
vity by phosphorylating Tsc2 via AMPK (72), and treatment 
with metformin prolongs the lifespan of female mice (73). 

The effects of mTOR antagonists on health have been 
investigated in human. Selective TORC1 inhibition improves 
immune function and reduces infections in elderly individuals 
(74). Improved immune function and reduced infection rates 
were observed in 264 elderly subjects who received a 
low-dose combination of a catalytic (BEZ235) and allosteric 
(RAD001) TORC1 inhibitors (74). In addition, upregulation of 
antiviral gene expression and an enhanced response to the 
influenza vaccine were observed in the elderly, even one year 
after initiation of the study drug (74). Rapamycin treatment is a 
potential antiaging therapy for human skin (75). Rapamycin 
treatment of the skin reduced the expression of p16INK4A, a 
marker of aging, which reflects a decrease in cellular sene-
scence. Additionally, rapamycin treatment increased collagen 
VII levels, which are important for basement membrane in-
tegrity (75). However, studies using data from patients prescribed 
metformin and rapamycin have important limitations, because 
these drugs are prescribed for the treatment of life-shortening 
diseases. Rapamycin and its derivatives also have side effects, 
such as type 2 diabetes (76). 

DR-INDUCED LONGEVITY IS REGULATED BY 
IMMUNE SIGNALS

Although little is known about the function of the immune 
system in animal longevity, Soo et al. recently reported that 
the innate immune system plays an important role in deter-
mining longevity, and that the same genes drive both im-
munity and longevity (77). Consistent with this finding, Fabian 
et al. (78) reported that aging and immune responses are 
modulated by a small number of conserved genetic pathways 
in animals, including in human. The authors compiled genetic 
information regarding regulation of the aging process and 
immune responses through public databases and in-house 
manual curation in C. elegans, D. melanogaster, mouse, and 
human. They combined genes within the Gene Ontology (GO) 
and KEGG terms related to aging or immunity, and included 
annotations from aging (GenAge (79), AgeFactDB (80)) and 
immunity (insect innate immunity database IIIDB (81), InnateDB 
(82), and immunome knowledge base IKB (83)) databases. They 
identified several conserved genes known to regulate both aging 
and immune responses. Ten highly conserved immune-aging 
genes were identified in the four species, six of which are sig-
naling components of the IIS and TOR pathways. These are akt-1/ 
Akt1/AKT2, age-1/Pi3K92E/PIK3CD, daf-2/InR/IGF1R, DAF-16/ 
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Fig. 2. DR extends longevity through modulation of immune sig-
nals. DR activates immune responses or prevents age-related immuno-
senescence in animals, including humans. DR increases the life-
span of animals through innate immune signals such as p38-MAPK-, 
ZIP-2-, or Myc-related signals in C. elegans and Drosophila. An 
impact of DR on longevity through immune signals has not yet 
been confirmed in mice or humans.

foxo/FOXO3, let-363/Tor/MTOR, and rsks-1/S6k/RPS6KB2 (gene 
name sequence: Caenorhabditis elegans/Drosophila melanogaster/ 
mammal). The other four immune-aging genes are mpk-1/rl/ 
MAPK1, pmk-1/p38a, b/MAPK14, mek-2/Dsor1/MAP2K1, and 
let60/Ras85D/HRAS, which act on the ERK and p38 MAPK 
signaling pathways (78). Therefore, these results suggest that 
the regulation of aging and immune function are closely 
related to each other, and suggests the need for detailed studies 
of the role of immune function in aging regulation. 

In fact, recent studies have reported that DR-induced longe-
vity is regulated by innate immune signaling components. In 
C. elegans, the bZIP transcription factor ZIP-2 is an innate 
immune signaling component molecule that is upregulated in 
response to infection by Pseudomonas aeruginosa (PA14), and 
is necessary for survival against PA14 infection (84). Hahm et 
al. reported that ZIP-2 is a key mediator of the effects of DR on 
healthy aging in C. elegans. They found that ZIP-2 activity 
increased in response to DR, and zip-2 was necessary for 
DR-induced longevity and physical activity improvement in 
worms subjected to DR (8). They found that ZIP-2 activity was 
increased by inhibition of the TOR signaling pathway and 
rapamycin treatment (8). They concluded that zip-2 extends 
longevity through TOR/S6K inhibition by DR. In addition, 
Hahm et al. found that the F-box gene fbxc-58 is a zip-2 
downstream effector molecule that protects worm against 
PA14 infection. They found that fbxc-58 was upregulated by 
DR or S6K mutation, and extended the longevity of worm 
through DR (18). Consistent with the results in C. elegans, 
acute DR boosts innate immunity in Drosophila (19). Lee et al. 
reported that DR via yeast restriction enhanced Drosophila 
survival against PA14 infection, and they confirmed that reduced 
TOR signaling protected flies from pathogenic bacterial infec-
tion. In addition, they confirmed the beneficial effects of yeast 
restriction on Drosophila immunity following rapamycin treat-
ment. The p38-MAPK signaling pathway is an important innate 
immune pathway that is highly conserved from C. elegans to 
human. Wu et al. reported that the p38-MAPK signaling 
pathway is related to longevity extension by DR in C. elegans. 
They found that DR maintained the level of the p38-ATF-7 
(ATF-7 is a transcription factor downstream of p38) innate im-
mune response at the basal activation level (20), and that main-
taining p38-ATF-7 activity at the basal level is an important 
factor for longevity in C. elegans. Thus, these results imply that 
the regulation of immune signals by DR is an important 
mechanism for extending longevity.

To the best of our knowledge, whether the immune system 
is involved in DR-induced longevity in mammal has not been 
established. However, several studies have reported that DR 
increases immune function in mammal and human. Fasting 
and FMD can improve immune response through regeneration 
of immune system. Chronic use of the FMD promotes a re-
versal of the age-dependent decline in the lymphoid-to-myeloid 
ratio (85), and prolonged fasting promoted hematopoietic stem 
cell based regeneration that affects to lymphocyte number and 

a reverse of immunosenescence (86). Mature functional T cells 
are generated in the thymus. Shrinkage of the thymus with 
aging reduces immune surveillance. Age-related changes in 
the adaptive immune system, such as thymic degeneration, 
reduced production of naive T cells, reduced T-cell prolife-
ration, and reduced activity of cytotoxic T lymphocytes, are 
accompanied by a weakening of immune function. DR can 
inhibit immune aging by preserving T-cell function and re-
pertoire, and promoting the production and/or maintenance of 
naive T cells in mouse, primate, and human (87-89). Further-
more, the concentrations of pro-inflammatory cytokines were 
lower in the DR group (89). These results raise the expectation 
that DR can enhance the lifespan of human by supporting a 
healthy immune system (Fig. 2).

CONCLUSIONS 

This review explained the relationship between DR, a repre-
sentative anti-aging intervention, and the immune system. 
Among the anti-aging intervention methods reported so far, 
DR is known to be the most effective and reproducible in 
animal, and the decline in immune function is recognized as a 
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cause of aging, or a result of aging. Actual decline in immune 
function is closely related to aging and the occurrence of 
aging-related diseases. Many reports have demonstrated that 
the anti-aging effect of DR is induced by regulation of the 
function of the immune system. Through DR, it is possible to 
alleviate the decline in function of various immune cells due 
to aging, and increase the activity of the immune response. In 
addition, a comparative analysis between species on the 
relationship between aging control signals and immune func-
tion control signals studied in human and various animal 
models suggests that the same signaling pathways regulate 
aging and immune function. These results suggest that DR en-
hances immune function, and this immune function enhance-
ment can lead to lifespan extension. In fact, recent studies 
have provided support for the notion that DR-induced increases 
in lifespan in small animals (C. elegans and Drosophila) are 
induced by immune signaling regulation (8, 18-20). Therefore, 
maintenance of homeostasis of the immune system is thought 
to play an important role as one of the longevity regulation 
mechanisms by DR. To date, the effect of DR on the human 
lifespan has not been demonstrated. However, the effects of 
DR on the suppression of aging-related diseases are regulated 
by signal transduction pathways that are highly conserved and 
functional in other animal models, and immune function-en-
hancing effects of DR have also been reported in human. 
Therefore, this review suggests that anti-aging research should 
focus on the mechanism of the immune system as an inter-
vention for healthy aging, and should also focus on the re-
lationship between the DR mechanism and immune function.
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