Acknowledgement
This study was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) and Korea Smart Farm R&D Foundation (KosFarm) through Smart Farm Innovation Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) and MSIT, Rural Development Administration (RDA) (No. 421045-03). Also, this research was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(MOE) (2021RIS-002) and the Cooperative Research Program for Agriculture Science & Technology Development (No. PJ01604601), Rural Development Administration, Republic of, Korea. This research was also supported by the Chung-Ang University Graduate Research Scholarship (Academic Scholarship for the College of Biotechnology and Natural Resources) in 2023. We also thank to Dr. Janet Westpheling at University of Georgia for providing important C. bescii mutant strains.
References
- Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, et al. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315: 804-807. https://doi.org/10.1126/science.1137016
- Wilson DB. 2008. Three microbial strategies for plant cell wall degradation. Ann. N Y Acad. Sci. 1125: 289-297. https://doi.org/10.1196/annals.1419.026
- McCann MC, Carpita NC. 2008. Designing the deconstruction of plant cell walls. Curr. Opin. Plant Biol. 11: 314-320. https://doi.org/10.1016/j.pbi.2008.04.001
- Cha M, Chung D, Elkins JG, Guss AM, Westpheling J. 2013. Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass. Biotechnol. Biofuels 6: 85.
- Blumer-Schuette SE, Giannone RJ, Zurawski JV, Ozdemir I, Ma Q, Yin Y, et al. 2012. Caldicellulosiruptor core and pangenomes reveal determinants for noncellulosomal thermophilic deconstruction of plant biomass. J. Bacteriol. 194: 4015-4028. https://doi.org/10.1128/JB.00266-12
- Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MW, Kelly RM. 2008. Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr. Opin. Biotechnol. 19: 210-217. https://doi.org/10.1016/j.copbio.2008.04.007
- Yang SJ, Kataeva I, Hamilton-Brehm SD, Engle NL, Tschaplinski TJ, Doeppke C, et al. 2009. Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe "Anaerocellum thermophilum" DSM 6725. Appl. Environ. Microbiol. 75: 4762-4769. https://doi.org/10.1128/AEM.00236-09
- Chou CJ, Jenney FE, Jr., Adams MW, Kelly RM. 2008. Hydrogenesis in hyperthermophilic microorganisms: implications for biofuels. Metab. Eng. 10: 394-404. https://doi.org/10.1016/j.ymben.2008.06.007
- Schut GJ, Adams MW. 2009. The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J. Bacteriol. 191: 4451-4457. https://doi.org/10.1128/JB.01582-08
- Soboh B, Linder D, Hedderich R. 2004. A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis. Microbiology 150: 2451-2463. https://doi.org/10.1099/mic.0.27159-0
- Catrin Sehr6der MS, Peter Seh6nheit. 1994. Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden-Meyerhof pathway. Arch. Microbiol. 161: 460-470.
- Kanai T, Imanaka H, Nakajima A, Uwamori K, Omori Y, Fukui T, et al. 2005. Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. J. Biotechnol. 116: 271-282. https://doi.org/10.1016/j.jbiotec.2004.11.002
- Chung D, Farkas J, Westpheling J. 2013. Overcoming restriction as a barrier to DNA transformation in Caldicellulosiruptor species results in efficient marker replacement. Biotechnol. Biofuels 6: 82.
- Cha M, Wang H, Chung D, Bennetzen JL, Westpheling J. 2013. Isolation and bioinformatic analysis of a novel transposable element, ISCbe4, from the hyperthermophilic bacterium, Caldicellulosiruptor bescii. J. Ind. Microbiol. Biotechnol. 40: 1443-1448. https://doi.org/10.1007/s10295-013-1345-8
- Chung D, Cha M, Farkas J, Westpheling J. 2013. Construction of a stable replicating shuttle vector for Caldicellulosiruptor species: use for extending genetic methodologies to other members of this genus. PLoS One 8: e62881.
- Farkas J, Chung D, Cha M, Copeland J, Grayeski P, Westpheling J. 2013. Improved growth media and culture techniques for genetic analysis and assessment of biomass utilization by Caldicellulosiruptor bescii. J. Ind. Microbiol. Biotechnol. 40: 41-49. https://doi.org/10.1007/s10295-012-1202-1