DOI QR코드

DOI QR Code

Statistical Optimization of Biosurfactant Production from Aspergillus niger SA1 Fermentation Process and Mathematical Modeling

  • Mansour A. Al-hazmi (Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University) ;
  • Tarek A. A. Moussa (Botany and Microbiology Department, Faculty of Science, Cairo University) ;
  • Nuha M. Alhazmi (Department of Biology, College of Science, University of Jeddah)
  • 투고 : 2023.03.03
  • 심사 : 2023.05.25
  • 발행 : 2023.09.28

초록

In this study, we sought to investigate the production and optimization of biosurfactants by soil fungi isolated from petroleum oil-contaminated soil in Saudi Arabia. Forty-four fungal isolates were isolated from ten petroleum oil-contaminated soil samples. All isolates were identified using the internal transcribed spacer (ITS) region, and biosurfactant screening showed that thirty-nine of the isolates were positive. Aspergillus niger SA1 was the highest biosurfactant producer, demonstrating surface tension, drop collapsing, oil displacement, and an emulsification index (E24) of 35.8 mN/m, 0.55 cm, 6.7 cm, and 70%, respectively. This isolate was therefore selected for biosurfactant optimization using the Fit Group model. The biosurfactant yield was increased 1.22 times higher than in the nonoptimized medium (8.02 g/l) under conditions of pH 6, temperature 35℃, waste frying oil (5.5 g), agitation rate of 200 rpm, and an incubation period of 7 days. Model significance and fitness analysis had an RMSE score of 0.852 and a p-value of 0.0016. The biosurfactant activities were surface tension (35.8 mN/m), drop collapsing (0.7 cm), oil displacement (4.5 cm), and E24 (65.0%). The time course of biosurfactant production was a growth-associated phase. The main outputs of the mathematical model for biomass yield were Yx/s (1.18), and µmax (0.0306) for biosurfactant yield was Yp/s (1.87) and Yp/x (2.51); for waste frying oil consumption the So was 55 g/l, and Ke was 2.56. To verify the model's accuracy, percentage errors between biomass and biosurfactant yields were determined by experimental work and calculated using model equations. The average error of biomass yield was 2.68%, and the average error percentage of biosurfactant yield was 3.39%.

키워드

과제정보

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. G-256-130-1442. The authors, therefore, acknowledge with thanks DSR for technical and financial support.

참고문헌

  1. Raza ZA, Rehman A, Hussain MT, Masood R, ul Haq A, Saddique MT, et al. 2014. Production of rhamnolipid surfactant and its application in bioscouring of cotton fabric. Carbohydr. Res. 391: 97-105. https://doi.org/10.1016/j.carres.2014.03.009
  2. Sena HH, Sanches MA, Rocha DFS, Segundo WOPF, de Souza ES, de Souza JVB. 2018. Production of biosurfactants by soil fungi isolated from the Amazon forest. Int. J. Microbiol. 2018: 5684261.
  3. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, et al. 2010. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 87: 427-444. https://doi.org/10.1007/s00253-010-2589-0
  4. Cowan-Ellsberry C, Belanger S, Dorn P, Dyer S, McAvoy D, Sanderson H, et al. 2014. Environmental safety of the use of major surfactant classes in North America. Crit. Rev. Environ. Sci. Technol. 44: 1893-1993. https://doi.org/10.1080/10739149.2013.803777
  5. Otzen DE. 2017. Biosurfactants and surfactants interacting with membranes and proteins: same but different? Biochim. Biophys. Acta (BBA)-Biomembranes 1859: 639-649. https://doi.org/10.1016/j.bbamem.2016.09.024
  6. Johnson P, Trybala A, Starov V, Pinfield VJ. 2021. Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants. Adv. Colloid Interface Sci. 288: 102340.
  7. Celik PA, Manga EB, Cabuk A, Banat IM. 2020. Biosurfactants' potential role in combating COVID-19 and similar future microbial threats. Appl. Sci. 11: 334.
  8. Geetha SJ, Banat IM, Joshi SJ. 2018. Biosurfactants: production and potential applications in microbial enhanced oil recovery (MEOR). Biocatal. Agric. Biotechnol. 14: 23-32. https://doi.org/10.1016/j.bcab.2018.01.010
  9. Castiglioni GL, Bertolin TE, Costa JAV. 2009. Producao de biossurfactante por Aspergillus fumigatus utilizando residuos agroindustriais como substrato. Quim. Nova 32: 292-295. https://doi.org/10.1590/S0100-40422009000200005
  10. Velioglu Z, uREK RO. 2015. Biosurfactant production by Pleurotus ostreatus in submerged and solid-state fermentation systems. Turkish J. Biol. 39: 160-166. https://doi.org/10.3906/biy-1406-44
  11. Moussa TAA, Mohamed MS, Samak N. 2014. Production and characterization of Di-rhamnolipid produced by Pseudomonas aeruginosa TMN. Braz. J. Chem. Eng. 31: 867-880. https://doi.org/10.1590/0104-6632.20140314s00002473
  12. Adrio JL, Demain AL. 2003. Fungal biotechnology. Int. Microbiol. 6: 191-199. https://doi.org/10.1007/s10123-003-0133-0
  13. Fontes GC, Amaral PFF, Coelho MAZ. 2008. Producao de biossurfactante por levedura. Quim. Nova 31: 2091-2099. https://doi.org/10.1590/S0100-40422008000800033
  14. Pacwa-Plociniczak M, Plaza GA, Piotrowska-Seget Z, Cameotra SS. 2011. Environmental applications of biosurfactants: recent advances. Int. J. Mol. Sci. 12: 633-654. https://doi.org/10.3390/ijms12010633
  15. Das P, Mukherjee S, Sen R. 2008. Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin. Chemosphere 72: 1229-1234. https://doi.org/10.1016/j.chemosphere.2008.05.015
  16. Nitschke M, Pastore GM. 2002. Biossurfactantes: propriedades e aplicacoes. Quim. Nova 25: 772-776. https://doi.org/10.1590/S0100-40422002000500013
  17. Rehman A, Raza ZA, Khalid ZM, Subramani C, Rotello VM, Hussain I. 2010. Synthesis and use of self-assembled rhamnolipid microtubules as templates for gold nanoparticles assembly to form gold microstructures. J. Colloid. Interface Sci. 347: 332-335. https://doi.org/10.1016/j.jcis.2010.04.015
  18. Bae I, Lee ES, Yoo JW, Lee SH, Ko JY, Kim YJ, et al. 2019. Mannosylerythritol lipids inhibit melanogenesis via suppressing ERK-CREB-MiTF-tyrosinase signalling in normal human melanocytes and a three-dimensional human skin equivalent. Exp. Dermatol. 28: 738-741. https://doi.org/10.1111/exd.13836
  19. Maniglia BC, Laroque DA, de Andrade LM, Carciofi BAM, Tenorio JAS, de Andrade CJ. 2019. Production of active cassava starch films; effect of adding a biosurfactant or synthetic surfactant. React. Funct. Polym. 144: 104368.
  20. Shah V, Daverey A. 2021. Effects of sophorolipids augmentation on the plant growth and phytoremediation of heavy metal contaminated soil. J. Clean. Prod. 280: 124406.
  21. Chuo SC, Ahmad A, Mohd-Setapar SH, Mohamed SF, Rafatullah M. 2019. Utilization of green sophorolipids biosurfactant in reverse micelle extraction of antibiotics: kinetic and mass transfer studies. J. Mol. Liq. 276: 225-232. https://doi.org/10.1016/j.molliq.2018.11.138
  22. Guerfali M, Ayadi I, Mohamed N, Ayadi W, Belghith H, Bronze MR, et al. 2019. Triacylglycerols accumulation and glycolipids secretion by the oleaginous yeast Rhodotorula babjevae Y-SL7: structural identification and biotechnological applications. Bioresour. Technol. 273: 326-334. https://doi.org/10.1016/j.biortech.2018.11.036
  23. Ranjana M, Ramesh VVE, Babu TGS, Kumar DVR. 2019. Sophorolipid induced hydrothermal synthesis of Cu nanowires and its modulating effect on Cu nanostructures. Nano-Struct. Nano-Objects 18: 100285.
  24. Menon V, Prakash G, Prabhune A, Rao M. 2010. Biocatalytic approach for the utilization of hemicellulose for ethanol production from agricultural residue using thermostable xylanase and thermotolerant yeast. Bioresour. Technol. 101: 5366-5373. https://doi.org/10.1016/j.biortech.2010.01.150
  25. Ye M, Sun M, Wan J, Feng Y, Zhao Y, Tian D, et al. 2016. Feasibility of lettuce cultivation in sophoroliplid-enhanced washed soil originally polluted with Cd, antibiotics, and antibiotic-resistant genes. Ecotoxicol. Environ. Saf. 124: 344-350. https://doi.org/10.1016/j.ecoenv.2015.11.013
  26. Luna JM, Rufino RD, Jara AMAT, Brasileiro PPF, Sarubbo LA. 2015. Environmental applications of the biosurfactant produced by Candida sphaerica cultivated in low-cost substrates. Colloids Surf. A Physicochem. Eng. Asp. 480: 413-418. https://doi.org/10.1016/j.colsurfa.2014.12.014
  27. Zahoor F, Jamil N, Batool R. 2022. Microbial Biosurfactants: Characterization, Properties, and Environmental Applications BT - Sustainable Management of Environmental Contaminants: Eco-friendly Remediation Approaches, pp. 371-389. In Aftab T (ed.), Springer International Publishing, Cham.
  28. De Hoog GS, Haase G. 1993. Nutritional physiology and selective isolation of Exophiala dermatitidis. Antonie Van Leeuwenhoek 64: 17-26. https://doi.org/10.1007/BF00870917
  29. Nash SM, Snyder WC. 1962. Quantitative estimations by plate counts of propagules of the bean root rot Fusarium in field soils. Phytopathology 52: 567-572.
  30. Bulitz EG. 1986. A selective medium for the isolation of Fusarium spp. from soil debris. Phytophylactica 18: 67-70.
  31. Heyd M, Kohnert A, Tan T-H, Nusser M, Kirschhofer F, Brenner-Weiss G, et al. 2008. Development and trends of biosurfactant analysis and purification using rhamnolipids as an example. Anal. Bioanal. Chem. 391: 1579-1590. https://doi.org/10.1007/s00216-007-1828-4
  32. Ahmad Z, Arshad M, Asghar HN, Sheikh MA, Crowley DE. 2016. Isolation, screening and functional characterization of biosurfactant producing bacteria isolated from crude oil contaminated site. Int. J. Agric. Biol. 18: 542-548. https://doi.org/10.17957/IJAB/15.0126
  33. Datta P, Tiwari P, Pandey LM. 2018. Isolation and characterization of biosurfactant producing and oil degrading Bacillus subtilis MG495086 from formation water of Assam oil reservoir and its suitability for enhanced oil recovery. Bioresour. Technol. 270: 439-448. https://doi.org/10.1016/j.biortech.2018.09.047
  34. Bodour AA, Miller-Maier RM. 1998. Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J. Microbiol. Methods 32: 273-280. https://doi.org/10.1016/S0167-7012(98)00031-1
  35. Tabatabaei A, Nouhi AA, Sajadian VA, Mazaheri AM. 2005. Isolation of biosurfactant producing bacteria from oil reservoirs. Iranian J. Env. Health Sci. Eng. 2: 6-12.
  36. Asfora Sarubbo L, Moura de Luna J, de Campos-Takaki GM. 2006. Production and stability studies of the bioemulsifier obtained from a new strain of Candida glabrata UCP 1002. Electron. J. Biotechnol. 9: 4.
  37. Jones B, Sall J. 2011. JMP statistical discovery software. Wiley Interdiscip. Rev. Comput. Stat. 3: 188-194. https://doi.org/10.1002/wics.162
  38. Qazi MA, Kanwal T, Jadoon M, Ahmed S, Fatima N. 2014. Isolation and characterization of a biosurfactant-producing Fusarium sp. BS-8 from oil contaminated soil. Biotechnol. Prog. 30: 1065-1075. https://doi.org/10.1002/btpr.1933
  39. Patel K. 2020. Optimization of culture conditions for biosurfactant production by Wickerhamomyces edaphicus isolated from Mangrove region of Mundra, Kutch, Gujarat. Indian J. Sci. Technol. 13: 1935-1943. https://doi.org/10.17485/IJST/v13i19.301
  40. Santos DKF, Rufino RD, Luna JM, Santos VA, Sarubbo LA. 2016. Biosurfactants: multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 17: 401.
  41. Kubicki S, Bollinger A, Katzke N, Jaeger KE, Loeschcke A, Thies S. 2019. Marine biosurfactants: biosynthesis, structural diversity and biotechnological applications. Mar. Drugs 17: 408.
  42. Abbot V, Paliwal D, Sharma A, Sharma P. 2022. A review on the physicochemical and biological applications of biosurfactants in biotechnology and pharmaceuticals. Heliyon 8: e10149.
  43. Welemariam M, Kebede F, Bedadi B, Birhane E. 2018. Effect of community-based soil and water conservation practices on arbuscular mycorrhizal fungi types, spore densities, root colonization, and soil nutrients in the northern highlands of Ethiopia. Chem. Biol. Technol. Agric. 5: 9.
  44. Birhane E, Aregawi K, Giday K. 2017. Changes in arbuscular mycorrhiza fungi spore density and root colonization of woody plants in response to exclosure age and slope position in the highlands of Tigray, Northern Ethiopia. J. Arid Environ. 142: 1-10. https://doi.org/10.1016/j.jaridenv.2017.03.002
  45. Andersson Aino M, Varga A, Mikkola R, Vornanen-Winqvist C, Salo J, Kredics L, et al. 2022. Aspergillus was the dominant genus found during diversity tracking of potentially pathogenic indoor fungal Isolates. Pathogen 11: 1171.
  46. Simonovicova A, Vojtkova H, Nosalj S, Pieckova E, Svehlakova H, Krakova L, et al. 2021. Aspergillus niger environmental isolates and their specific diversity through metabolite profiling. Front. Microbiol. 12: 658010.
  47. Pangallo D, Krakova L, Chovanova K, Simonovicova A, De Leo F, Urzi C. 2012. Analysis and comparison of the microflora isolated from fresco surface and from surrounding air environment through molecular and biodegradative assays. World J. Microbiol. Biotechnol. 28: 2015-2027. https://doi.org/10.1007/s11274-012-1004-7
  48. Abdel-Mawgoud AM, Stephanopoulos G. 2018. Simple glycolipids of microbes: chemistry, biological activity and metabolic engineering. Synth. Syst. Biotechnol. 3: 3-19. https://doi.org/10.1016/j.synbio.2017.12.001
  49. Sunde M, Pham CLL, Kwan AH. 2017. Molecular characteristics and biological functions of surface-active and surfactant proteins. Annu. Rev. Biochem. 86: 585-608. https://doi.org/10.1146/annurev-biochem-061516-044847
  50. Garay LA, Sitepu IR, Cajka T, Xu J, Teh HE, German JB, et al. 2018. Extracellular fungal polyol lipids: a new class of potential high value lipids. Biotechnol. Adv. 36: 397-414. https://doi.org/10.1016/j.biotechadv.2018.01.003
  51. Steiger MG, Blumhoff ML, Mattanovich D, Sauer M. 2013. Biochemistry of microbial itaconic acid production. Front. Microbiol. 4: 23.
  52. Adeleke R, Nwangburuka C, Oboirien B. 2017. Origins, roles and fate of organic acids in soils: a review. South African J. Bot. 108: 393-406. https://doi.org/10.1016/j.sajb.2016.09.002
  53. Odoni DI, van Gaal MP, Schonewille T, Tamayo-Ramos JA, Martins dos Santos VAP, Suarez-Diez M, et al. 2017. Aspergillus niger secretes citrate to increase iron bioavailability. Front. Microbiol. 8: 1424.
  54. da Silva AF, Banat IM, Giachini AJ, Robl D. 2021. Fungal biosurfactants, from nature to biotechnological product: bioprospection, production and potential applications. Bioprocess Biosyst. Eng. 44: 2003-2034. https://doi.org/10.1007/s00449-021-02597-5
  55. Sperb JGC, Costa TM, Bertoli SL, Tavares LBB. 2018. Simultaneous production of biosurfactants and lipases from Aspergillus Niger and optimization by response surface methodology and desirability functions. Braz. J. Chem. Eng. 35: 857-868. https://doi.org/10.1590/0104-6632.20180353s20160400
  56. Colla LM, Rizzardi J, Pinto MH, Reinehr CO, Bertolin TE, Costa JAV. 2010. Simultaneous production of lipases and biosurfactants by submerged and solid-state bioprocesses. Bioresour. Technol. 101: 8308-8314. https://doi.org/10.1016/j.biortech.2010.05.086
  57. Sarkar D, Laha S. 2013. Optimization of extracellular lipase enzyme production from Aspergillus Niger by submerged and solid-state fermentation process. Int. J. Pharma Bio Sci. 4: 978-985.
  58. Papanikolaou S, Dimou A, Fakas S, Diamantopoulou P, Philippoussis A, Galiotou-Panayotou M, et al. 2011. Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains. J. Appl. Microbiol. 110: 1138-1150. https://doi.org/10.1111/j.1365-2672.2011.04961.x
  59. Kosaric N, Sukan FV. 2010. Biosurfactants: production: properties: applications. CRC Press.
  60. Hasani Zadeh P, Moghimi H, Hamedi J. 2018. Biosurfactant production by Mucor circinelloides: environmental applications and surface-active properties. Eng. Life Sci. 18: 317-325. https://doi.org/10.1002/elsc.201700149
  61. Sekhon KK, Khanna S, Cameotra SS. 2011. Enhanced biosurfactant production through cloning of three genes and role of esterase in biosurfactant release. Microb. Cell Fact. 10: 49.
  62. Kaplan N, Rosenberg E. 1982. Exopolysaccharide distribution of and bioemulsifier production by Acinetobacter calcoaceticus BD4 and BD413. Appl. Environ. Microbiol. 44: 1335-1341. https://doi.org/10.1128/aem.44.6.1335-1341.1982
  63. Peypoux F, Bonmatin JM, Wallach J. 1999. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol. 51: 553-563. https://doi.org/10.1007/s002530051432
  64. Sen S, Borah SN, Bora A, Deka S. 2017. Production, characterization, and antifungal activity of a biosurfactant produced by Rhodotorula babjevae YS3. Microb. Cell Fact. 16: 95.
  65. Diniz Rufino R, Moura de Luna J, de Campos Takaki GM, Asfora Sarubbo L. 2014. Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electron. J. Biotechnol. 17: 6.
  66. Nweze EJ, Ubani CS, Nwachukwu JN, Arazu AV, Oje OA, Njoku OU. 2021. Production of biosurfactants Aspergillus niger and rhodotorula sp. isolated from sugar cane bagasse dumpsite: a comparative study. Trop. J. Nat. Prod. Res. 5: 924-927. https://doi.org/10.26538/tjnpr/v5i5.20
  67. Asgher M, Arshad S, Qamar SA, Khalid N. 2020. Improved biosurfactant production from Aspergillus niger through chemical mutagenesis: characterization and RSM optimization. SN Appl. Sci. 2, 966.
  68. Taofeeq Adekunle A, Bolatito Ester B, Olabisi Peter A, Solomon Bankole O, Udeme Joshia Joshua I, Alfa S. 2015. Characterization of new glycosophorolipid-surfactant produced by Aspergillus Niger and Aspergillus flavus. Eur. J. Biotechnol. Biosci. 3: 34-39.
  69. Geys R, Soetaert W, Van Bogaert I. 2014. Biotechnological opportunities in biosurfactant production. Curr. Opin. Biotechnol. 30: 66-72. https://doi.org/10.1016/j.copbio.2014.06.002
  70. Antony J. 2014. 5 - Screening Designs, pp. 51-62, In Antony JBT-D of E for E and S (Second E (ed.), Elsevier, Oxford.
  71. Maheshwari N, Kumar M, Thakur IS, Srivastava S. 2017. Recycling of carbon dioxide by free air CO2 enriched (FACE) Bacillus sp. SS105 for enhanced production and optimization of biosurfactant. Bioresour. Technol. 242: 2-6. https://doi.org/10.1016/j.biortech.2017.03.124