DOI QR코드

DOI QR Code

The Gut Microbiota of Pregnant Rats Alleviates Fetal Growth Restriction by Inhibiting the TLR9/MyD88 Pathway

  • Hui Tang (Department of Maternal and Child Health, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University) ;
  • Hanmei Li (Department of Maternal and Child Health, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University) ;
  • Dan Li (Department of Maternal and Child Health, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University) ;
  • Jing Peng (Department of Maternal and Child Health, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University) ;
  • Xian Zhang (Department of Maternal and Child Health, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University) ;
  • Weitao Yang (Department of Maternal and Child Health, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University)
  • Received : 2023.04.14
  • Accepted : 2023.06.14
  • Published : 2023.09.28

Abstract

Fetal growth restriction (FGR) is a prevalent obstetric condition. This study aimed to investigate the role of Toll-like receptor 9 (TLR9) in regulating the inflammatory response and gut microbiota structure in FGR. An FGR animal model was established in rats, and ODN1668 and hydroxychloroquine (HCQ) were administered. Changes in gut microbiota structure were assessed using 16S rRNA sequencing, and fecal microbiota transplantation (FMT) was conducted. HTR-8/Svneo cells were treated with ODN1668 and HCQ to evaluate cell growth. Histopathological analysis was performed, and relative factor levels were measured. The results showed that FGR rats exhibited elevated levels of TLR9 and myeloid differentiating primary response gene 88 (MyD88). In vitro experiments demonstrated that TLR9 inhibited trophoblast cell proliferation and invasion. TLR9 upregulated lipopolysaccharide (LPS), LPS-binding protein (LBP), interleukin (IL)-1β and tumor necrosis factor (TNF)-α while downregulating IL-10. TLR9 activated the TARF3-TBK1-IRF3 signaling pathway. In vivo experiments showed HCQ reduced inflammation in FGR rats, and the relative cytokine expression followed a similar trend to that observed in vitro. TLR9 stimulated neutrophil activation. HCQ in FGR rats resulted in changes in the abundance of Eubacterium_coprostanoligenes_group at the family level and the abundance of Eubacterium_coprostanoligenes_group and Bacteroides at the genus level. TLR9 and associated inflammatory factors were correlated with Bacteroides, Prevotella, Streptococcus, and Prevotellaceae_Ga6A1_group. FMT from FGR rats interfered with the therapeutic effects of HCQ. In conclusion, our findings suggest that TLR9 regulates the inflammatory response and gut microbiota structure in FGR, providing new insights into the pathogenesis of FGR and suggesting potential therapeutic interventions.

Keywords

Acknowledgement

Thank all colleagues who helped with this research. Thank the editors and reviewers for their valuable comments on the paper.

References

  1. ACOG Practice Bulletin No. 204: Fetal Growth Restriction. 2019. Obstet. Gynecol. 133: e97-e109. https://doi.org/10.1097/AOG.0000000000003070
  2. Nardozza LM, Caetano AC, Zamarian AC, Mazzola JB, Silva CP, Marcal VM, et al. 2017. Fetal growth restriction: current knowledge. Arch. Gynecol. Obstet. 295: 1061-1077. https://doi.org/10.1007/s00404-017-4341-9
  3. Srugo SA, Bloise E, Nguyen TTN, Connor KL. 2019. Impact of maternal malnutrition on gut barrier defense: implications for pregnancy health and fetal development. Nutrients 11: 1375.
  4. Connor KL, Kibschull M, Matysiak-Zablocki E, Nguyen TTN, Matthews SG, Lye SJ, et al. 2020. Maternal malnutrition impacts placental morphology and transporter expression: an origin for poor offspring growth. J. Nutr. Biochem. 78: 108329.
  5. Strandwitz P. 2018. Neurotransmitter modulation by the gut microbiota. Brain Res. 1693: 128-133. https://doi.org/10.1016/j.brainres.2018.03.015
  6. Abenavoli L, Scarpellini E, Colica C, Boccuto L, Salehi B, Sharifi-Rad J, et al. 2019.Gut microbiota and obesity: a role for probiotics. Nutrients 11: 2690.
  7. Fernandez-Gonzalez S, Ortiz-Arrabal O, Torrecillas A, Perez-Cruz M, Chueca N, Gomez-Roig MD, et al. 2020. Study of the fetal and maternal microbiota in pregnant women with intrauterine growth restriction and its relationship with inflammatory biomarkers: a case-control study protocol (SPIRIT compliant). Medicine 99: e22722.
  8. Palladino E, Van Mieghem T, Connor KL. 2021. Diet alters micronutrient pathways in the gut and placenta that regulate fetal growth and development in pregnant mice. Reprod. Sci. 28: 447-461. https://doi.org/10.1007/s43032-020-00297-1
  9. Kalagiri RR, Carder T, Choudhury S, Vora N, Ballard AR, Govande V, et al. 2016. Inflammation in complicated pregnancy and its outcome. Am. J. Perinatol. 33: 1337-1356. https://doi.org/10.1055/s-0036-1582397
  10. Nadeau-Vallee M, Obari D, Palacios J, Brien ME, Duval C, Chemtob S, et al. 2016. Sterile inflammation and pregnancy complications: a review. Reproduction 152: R277-R292. https://doi.org/10.1530/REP-16-0453
  11. Zong F, Zhao Y. 2021. Alkaloid leonurine exerts anti-inflammatory effects via modulating MST1 expression in trophoblast cells. Immun. Inflamm. Dis. 9: 1439-1446. https://doi.org/10.1002/iid3.493
  12. Baker BC, Heazell AEP, Sibley C, Wright R, Bischof H, Beards F, et al. 20201.Hypoxia and oxidative stress induce sterile placental inflammation in vitro. Sci. Rep. 11: 7281.
  13. Lee HH, Bae JM, Lee BI, Lee KM, Wie JH, Kim JS, et al. 2020. Pregnancy outcomes in women with inflammatory bowel disease: a 10- year nationwide population-based cohort study. Aliment. Pharmacol. Ther. 51: 861-869. https://doi.org/10.1111/apt.15654
  14. Fitzgerald KA, Kagan JC. 2020. Toll-like receptors and the control of immunity. Cell 180: 1044-1066. https://doi.org/10.1016/j.cell.2020.02.041
  15. Ciesielska A, Matyjek M, Kwiatkowska K. 2021. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell. Mol.Life Sci. 78: 1233-1261. https://doi.org/10.1007/s00018-020-03656-y
  16. Ryu JK, Kim SJ, Rah SH, Kang JI, Jung HE, Lee D, et al. 2017. Reconstruction of LPS transfer cascade reveals structural determinants within LBP, CD14, and TLR4-MD2 for efficient LPS recognition and transfer. Immunity 46: 38-50. https://doi.org/10.1016/j.immuni.2016.11.007
  17. Hong CP, Yun CH, Lee GW, Park A, Kim YM, Jang MH. 2015. TLR9 regulates adipose tissue inflammation and obesity-related metabolic disorders. Obesity (Silver Spring). 23: 2199-2206. https://doi.org/10.1002/oby.21215
  18. Saikh KU. 2021. MyD88 and beyond: a perspective on MyD88-targeted therapeutic approach for modulation of host immunity. Immunol. Res. 69: 117-128. https://doi.org/10.1007/s12026-021-09188-2
  19. Afkham A, Eghbal-Fard S, Heydarlou H, Azizi R, Aghebati-Maleki L, Yousefi M. 2019. Toll-like receptors signaling network in preeclampsia: an updated review. J. Cell. Physiol. 234: 2229-2240. https://doi.org/10.1002/jcp.27189
  20. Liu H, Wang Y, Liu J, Fu W. 2019. Proteomics analysis of fetal growth restriction and taurinetreated fetal growth restriction rat brain tissue by 2D DIGE and MALDITOF/TOF MS analysis. Int. J. Mol. Med. 44: 207-217. https://doi.org/10.3892/ijmm.2019.4182
  21. X C, P Z, P L, G W, J L, Y W, et al. 2023. CpG ODN 1668 as TLR9 agonist mediates humpback grouper (Cromileptes altivelis) antibacterial immune responses. Fish Shellfish Immunol. 138: 108839.
  22. Zonneveld-Huijssoon E, van Wijk F, Roord S, Delemarre E, Meerding J, de Jager W, et al. 2012. TLR9 agonist CpG enhances protective nasal HSP60 peptide vaccine efficacy in experimental autoimmune arthritis. Ann. Rheum. Dis. 71: 1706-1715. https://doi.org/10.1136/annrheumdis-2011-201131
  23. Damm J, Wiegand F, Harden LM, Wenisch S, Gerstberger R, Rummel C, et al. 2014. Intraperitoneal and subcutaneous injections of the TLR9 agonist ODN 1668 in rats: brain inflammatory responses are related to peripheral IL-6 rather than interferons. J. Neuroimmunol. 277: 105-117. https://doi.org/10.1016/j.jneuroim.2014.10.007
  24. Schrezenmeier E, Dorner T. 2020. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat. Rev. Rheumatol. 16: 155-166. https://doi.org/10.1038/s41584-020-0372-x
  25. Lamphier M, Zheng W, Latz E, Spyvee M, Hansen H, Rose J, et al. 2014. Novel small molecule inhibitors of TLR7 and TLR9: mechanism of action and efficacy in vivo. Mol. Pharmacol. 85: 429-440. https://doi.org/10.1124/mol.113.089821
  26. Gulden E, Chao C, Tai N, Pearson JA, Peng J, Majewska-Szczepanik M, et al. 2018. TRIF deficiency protects non-obese diabetic mice from type 1 diabetes by modulating the gut microbiota and dendritic cells. J. Autoimmun. 93: 57-65. https://doi.org/10.1016/j.jaut.2018.06.003
  27. Graham CH, Hawley TS, Hawley RG, MacDougall JR, Kerbel RS, Khoo N, et al. 1993 Establishment and characterization of first trimester human trophoblast cells with extended lifespan. Exp. Cell Res. 206: 204-211. https://doi.org/10.1006/excr.1993.1139
  28. Ueda H, Yamaguchi O, Taneike M, Akazawa Y, Wada-Kobayashi H, Sugihara R, et al. 2019. Administration of a TLR9 inhibitor attenuates the development and progression of heart failure in mice. JACC Basic Transl. Sci. 4: 348-363. https://doi.org/10.1016/j.jacbts.2019.01.002
  29. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7: 335-336. https://doi.org/10.1038/nmeth.f.303
  30. Olmos-Ortiz A, Flores-Espinosa P, Mancilla-Herrera I, Vega-Sanchez R, Diaz L, Zaga-Clavellina V. 2019. Innate immune cells and toll-like receptor-dependent responses at the maternal-fetal interface. Int. J. Mol. Sci. 20: 3654.
  31. Sun C, Groom KM, Oyston C, Chamley LW, Clark AR, James JL. 2020. The placenta in fetal growth restriction: what is going wrong? Placenta 96: 10-18. https://doi.org/10.1016/j.placenta.2020.05.003
  32. Shepard CR. 2020. TLR9 in MAFLD and NASH: at the intersection of inflammation and metabolism. Front. Endocrinol. (Lausanne). 11: 613639.
  33. Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ, Han M. 2022. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct. Target. Ther. 7: 131.
  34. Abbas Y, Turco MY, Burton GJ, Moffett A. 2020. Investigation of human trophoblast invasion in vitro. Hum. Reprod. Update26: 501-513. https://doi.org/10.1093/humupd/dmaa017
  35. Novakovic B, Rakyan V, Ng HK, Manuelpillai U, Dewi C, Wong NC, et al. 2008. Specific tumour-associated methylation in normal human term placenta and first-trimester cytotrophoblasts. Mol. Hum. Reprod. 14: 547-554. https://doi.org/10.1093/molehr/gan046
  36. Yu L, Sun Y, Chu Z. 2021. MiR-212-3p promotes proliferation and migration of trophoblast in fetal growth restriction by targeting placental growth factor. Bioengineered 12: 5655-5663. https://doi.org/10.1080/21655979.2021.1967069
  37. Cui J, Kang X, Shan Y, Zhang M, Gao Y, Wu W, et al. 2022. miR-1227-3p participates in the development of fetal growth restriction via regulating trophoblast cell proliferation and apoptosis. Sci. Rep. 12: 6374.
  38. Candelli M, Franza L, Pignataro G, Ojetti V, Covino M, Piccioni A, et al. 2021. Interaction between Lipopolysaccharide and gut microbiota in inflammatory bowel diseases. Int. J. Mol. Sci. 22: 6242.
  39. Mei C, Yang W, Wei X, Wu K, Huang D. 2019. The unique microbiome and innate immunity during pregnancy. Front. Immunol. 10: 2886.
  40. Cotechini T, Graham CH. 2015. Aberrant maternal inflammation as a cause of pregnancy complications: a potential therapeutic target? Placenta 36: 960-966. https://doi.org/10.1016/j.placenta.2015.05.016
  41. Leitner GR, Wenzel TJ, Marshall N, Gates EJ, Klegeris A. 2019. Targeting toll-like receptor 4 to modulate neuroinflammation in central nervous system disorders. Expert Opin. Ther. Targets 23: 865-882. https://doi.org/10.1080/14728222.2019.1676416
  42. Zou Y, Huang Y, Liu S, Yang J, Zheng W, Deng Y, et al. 2022. Periodontopathic microbiota and Atherosclerosis: roles of TLR-mediated inflammation response. Oxid. Med. Cell Longev. 2022: 9611362.
  43. Cornish EF, Filipovic I, Asenius F, Williams DJ, McDonnell T. 2020. Innate immune responses to acute viral infection during pregnancy. Front. Immunol. 11: 572567.
  44. Aneman I, Pienaar D, Suvakov S, Simic TP, Garovic VD, McClements L. 2020. Mechanisms of key innate immune cells in early- and late-onset preeclampsia. Front. Immunol. 11: 1864.
  45. Gao P, Ma X, Yuan M, Yi Y, Liu G, Wen M, et al. 2021. E3 ligase Nedd4l promotes antiviral innate immunity by catalyzing K29-linked cysteine ubiquitination of TRAF3. Nat. Commun. 12: 1194.
  46. Lin M, Ji X, Lv Y, Cui D, Xie J. 2023. The roles of TRAF3 in immune responses. Dis. Markers 2023: 7787803.
  47. Firmal P, Shah VK, Chattopadhyay S. 2020. Insight into TLR4-mediated immunomodulation in normal pregnancy and related disorders. Front. Immunol. 11: 807.
  48. Plociennikowska A, Hromada-Judycka A, Borzecka K, Kwiatkowska K. 2015. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mol. Life Sci. 72: 557-581. https://doi.org/10.1007/s00018-014-1762-5
  49. Kalyan M, Tousif AH, Sonali S, Vichitra C, Sunanda T, Praveenraj SS, et al. 2022. Role of endogenous lipopolysaccharides in neurological disorders. Cells 11: 4038.
  50. Banoth B, Cassel SL. 2018. Mitochondria in innate immune signaling. Transl. Res. 202: 52-68. https://doi.org/10.1016/j.trsl.2018.07.014
  51. Austad SN, Ballinger S, Buford TW, Carter CS, Smith DL, Jr., Darley-Usmar V, et al. 2022. Targeting whole body metabolism and mitochondrial bioenergetics in the drug development for Alzheimer's disease. Acta Pharm. Sin. B. 12: 511-531. https://doi.org/10.1016/j.apsb.2021.06.014
  52. Kiyokoba R, Uchiumi T, Yagi M, Toshima T, Tsukahara S, Fujita Y, et al. 2022. Mitochondrial dysfunction-induced high hCG associated with development of fetal growth restriction and pre-eclampsia with fetal growth restriction. Sci. Rep. 12: 4056.
  53. Msheik H, Azar J, El Sabeh M, Abou-Kheir W, Daoud G.2020. HTR-8/SVneo: a model for epithelial to mesenchymal transition in the human placenta. Placenta 90: 90-97. https://doi.org/10.1016/j.placenta.2019.12.013
  54. He B, Yang X, Li Y, Huang D, Xu X, Yang W, et al. 2018. 3 TLR9 (Toll-Like Receptor 9) agonist suppresses angiogenesis by differentially regulating VEGFA (Vascular Endothelial Growth Factor A) and sFLT1 (Soluble Vascular Endothelial Growth Factor Receptor 1) in Preeclampsia. Hypertension 71: 671-680. https://doi.org/10.1161/HYPERTENSIONAHA.117.10510
  55. Williamson RD, McCarthy FP, Kenny LC, McCarthy CM. 2019. Activation of a TLR9 mediated innate immune response in preeclampsia. Sci. Rep. 9: 5920.
  56. Liu Q, Yang W, Luo N, Liu J, Wu Y, Ding J, et al. 2020. LPS and IL-8 activated umbilical cord blood-derived neutrophils inhibit the progression of ovarian cancer. J. Cancer 11: 4413-4420. https://doi.org/10.7150/jca.41035
  57. Ravindran M, Khan MA, Palaniyar N. 2019. Neutrophil extracellular trap formation: physiology, pathology, and pharmacology. Biomolecules 9: 365.
  58. Mutua V, Gershwin LJ. 2021. A review of Neutrophil Extracellular Traps (NETs) in disease: potential anti-NETs therapeutics. Clin. Rev. Allergy Immunol. 61: 194-211. https://doi.org/10.1007/s12016-020-08804-7
  59. Beckers KF, Sones JL. 2020. Maternal microbiome and the hypertensive disorder of pregnancy, preeclampsia. Am. J. Physiol. Heart Circ. Physiol. 318: H1-H10. https://doi.org/10.1152/ajpheart.00469.2019
  60. Mustad VA, Huynh DTT, Lopez-Pedrosa JM, Campoy C, Rueda R. 2020. The role of dietary carbohydrates in gestational diabetes. Nutrients 12: 385.
  61. Lu Y, Li X, Liu S, Zhang Y, Zhang D. 2018. Toll-like receptors and inflammatory bowel disease. Front. Immunol. 9: 72.
  62. Massier L, Bluher M, Kovacs P, Chakaroun RM. 2021. Impaired intestinal barrier and tissue bacteria: pathomechanisms for metabolic diseases. Front. Endocrinol (Lausanne). 12: 616506.
  63. Wang X, Ni J, You Y, Feng G, Zhang S, Bao W, et al. 2021. SNX10-mediated LPS sensing causes intestinal barrier dysfunction via a caspase-5-dependent signaling cascade. EMBO J. 40: e108080.
  64. Cristofori F, Dargenio VN, Dargenio C, Miniello VL, Barone M, Francavilla R. 2021. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: a door to the body. Front. Immunol. 12: 578386.
  65. Tu X, Duan C, Lin B, Li K, Gao J, Yan H, et al. 2022. Characteristics of the gut microbiota in pregnant women with fetal growth restriction. BMC Pregnancy Childbirth 22: 297.
  66. Ding P, Tan Q, Wei Z, Chen Q, Wang C, Qi L, et al. 2022. Toll-like receptor 9 deficiency induces osteoclastic bone loss via gut microbiota-associated systemic chronic inflammation. Bone Res. 10: 42.
  67. Martinez-Colon G, Warheit-Niemi H, Gurczynski S, Taylor Q, Wilke C, Podsiad A, et al. 2019. Influenza-induced immune suppression to methicillin-resistant Staphylococcus aureus is mediated by TLR9. PLoS Pathog. 15: e1007560.
  68. Charlet R, Bortolus C, Sendid B, Jawhara S. 2020. Bacteroides thetaiotaomicron and Lactobacillus johnsonii modulate intestinal inflammation and eliminate fungi via enzymatic hydrolysis of the fungal cell wall. Sci. Rep. 10: 11510.
  69. Huang J, Tan Q, Tai N, Pearson JA, Li Y, Chao C, et al. 2021. IL-10 deficiency accelerates type 1 diabetes development via modulation of innate and adaptive immune cells and gut microbiota in BDC2.5 NOD mice. Front. Immunol. 12: 702955.
  70. Zhang W, Zou G, Li B, Du X, Sun Z, Sun Y, et al. 2020. Fecal Microbiota Transplantation (FMT) alleviates experimental colitis in mice by gut microbiota regulation. J. Microbiol. Biotechnol. 30: 1132-1141. https://doi.org/10.4014/jmb.2002.02044
  71. Vendrik KEW, Ooijevaar RE, de Jong PRC, Laman JD, van Oosten BW, van Hilten JJ, et al. 2020. Fecal microbiota transplantation in neurological disorders. Front. Cell Infect. Microbiol. 10: 98.
  72. Chen D, Wu J, Jin D, Wang B, Cao H. 2019. Fecal microbiota transplantation in cancer management: current status and perspectives. Int. J. Cancer 145: 2021-2031. https://doi.org/10.1002/ijc.32003
  73. Huang C, Wu D, Zhang K, Khan FA, Pandupuspitasari NS, Wang Y, et al. 2022. Perfluorooctanoic acid alters the developmental trajectory of female germ cells and embryos in rodents and its potential mechanism. Ecotoxicol. Environ. Saf. 236: 113467.