DOI QR코드

DOI QR Code

Neuroprotective Effects of Heat-Killed Levilactobacillus brevis KU15152 on H2O2-Induced Oxidative Stress

  • Hyun-Ji Bock (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Na-Kyoung Lee (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Hyun-Dong Paik (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
  • Received : 2023.04.25
  • Accepted : 2023.05.15
  • Published : 2023.09.28

Abstract

This study proposed to demonstrate the neuroprotective effects of heat-killed Levilactobacillus brevis KU15152. Heat-killed L. brevis KU15152 showed antioxidant activity similar to that of Lacticaseibacillus rhamnosus GG, in terms of radical scavenging activity. To evaluate the neuroprotective effects, conditioned medium (CM) obtained by incubating heat-killed bacteria in intestinal cells (HT-29) was used through gut-brain axis. CM from L. brevis KU15152 protected neuroblastoma cells (SH-SY5Y) against H2O2-induced oxidative stress. Pretreatment with CM significantly alleviated the morphological changes induced by H2O2. Heat-killed L. brevis KU15152 showed an increased brain-derived neurotrophic factor (BDNF) expression in HT-29 cells. L. brevis KU15152-CM remarkably downregulated the Bax/Bcl-2 ratio, while upregulating the expression of BDNF and tyrosine hydroxylase (TH) in SH-SY5Y cells. Furthermore, L. brevis KU15152-CM reduced caspase-3 activity following H2O2 treatment. In conclusion, L. brevis KU15152 can be potentially used as food materials to avoid neurodegenerative diseases.

Keywords

Acknowledgement

This work was supported by the Konkuk University Researcher Fund in 2022 and the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (IPET) through the High Value-added Food Technology Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) (#321035-5).

References

  1. Tian W, Zhao J, Lee JH, Akanda MR, Cho JH, Kim SK, et al. 2019. Neuroprotective effects of Cornus officinalis on stress-induced hippocampal deficits in rats and H2O2-induced neurotoxicity in SH-SY5Y neuroblastoma cells. Antioxidants 9: 27.
  2. Behl C. 1999. Alzheimer's disease and oxidative stress: implications for novel therapeutic approaches. Prog. Neurobiol. 57: 301-323. https://doi.org/10.1016/S0301-0082(98)00055-0
  3. Kim KJ, Jung YS, You DM, Lee SH, Lee G, Kwon KB, et al. 2021. Neuroprotective effects of ethanolic extract from dry Rhodiola rosea L. rhizomes. Food Sci. Biotechnol. 30: 287-297. https://doi.org/10.1007/s10068-020-00868-7
  4. Mattson MP, Duan W, Chan SL, Cheng A, Haughey N, Gary DS, et al. 2002. Neuroprotective and neurorestorative signal transduction mechanisms in brain aging: modification by genes, diet and behavior. Neurobiol. Aging 23: 695-705. https://doi.org/10.1016/S0197-4580(02)00025-8
  5. Suematsu N, Hosoda M, Fujimori K. 2011. Protective effects of quercetin against hydrogen peroxide-induced apoptosis in human neuronal SH-SY5Y cells. Neurosci. Lett. 504: 223-227. https://doi.org/10.1016/j.neulet.2011.09.028
  6. Lu B, Nagappan G, Lu Y. 2014. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb. Exp. Pharmacol. 220: 223-250. https://doi.org/10.1007/978-3-642-45106-5_9
  7. Daubner SC, Le T, Wang S. 2011. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch. Biochem. Biophys. 508: 1-12. https://doi.org/10.1016/j.abb.2010.12.017
  8. Cryan JF, O'Riordan KJ, Cowan CS, Sandhu KV, Bastiaanssen TF, Boehme M, et al. 2019. The microbiota-gut-brain axis. Physiol. Rev. 99: 1877-2013. https://doi.org/10.1152/physrev.00018.2018
  9. Westfall S, Lomis N, Kahouli I, Dia SY, Singh SP, Prakash S. 2017. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell. Mol. Life. Sci. 74: 3769-3787. https://doi.org/10.1007/s00018-017-2550-9
  10. Kim KT, Yang SJ, Paik HD. 2021. Probiotic properties of novel probiotic Levilactobacillus brevis KU15147 isolated from radish kimchi and its antioxidant and immune-enhancing activities. Food Sci. Biotechnol. 30: 257-265. https://doi.org/10.1007/s10068-020-00853-0
  11. Gazerani P. 2019. Probiotics for Parkinson's disease. Int. J. Mol. Sci. 20: 4121.
  12. Lee Y, Yoon Y, Choi KH. 2021. Probiotics-mediated bioconversion and periodontitis. Food Sci. Anim. Resour. 41: 905-922. https://doi.org/10.5851/kosfa.2021.e57
  13. Parashar A, Udayabanu M. 2017. Gut microbiota: Implications in Parkinson's disease. Parkinsonism Relat. Disord. 38: 1-7. https://doi.org/10.1016/j.parkreldis.2017.02.002
  14. Nataraj BH, Shivanna SK, Rao P, Nagpal R, Behare PV. 2021. Evolutionary concepts in the functional biotics arena: a mini-review. Food Sci. Biotechnol. 30: 487-496. https://doi.org/10.1007/s10068-020-00818-3
  15. Srivastav S, Neupane S, Bhurtel S, Katila N, Maharjan S, Choi H, et al. 2019. Probiotics mixture increases butyrate, and subsequently rescues the nigral dopaminergic neurons from MPTP and rotenone-induced neurotoxicity. J. Nutr. Biochem. 69: 73-86. https://doi.org/10.1016/j.jnutbio.2019.03.021
  16. Tan AH, Hor JW, Chong CW, Lim SY. 2021. Probiotics for Parkinson's disease: current evidence and future directions. JGH Open 5: 414-419. https://doi.org/10.1002/jgh3.12450
  17. Teame T, Wang A, Xie M, Zhang Z, Yang Y, Ding Q, et al. 2020. Paraprobiotics and postbiotics of probiotic lactobacilli, their positive effects on the host and action mechanisms: A review. Front. Nutr. 7: 570344.
  18. Wagner RD, Pierson C, Warner T, Dohnalek M, Hilty M, Balish E. 2000. Probiotic effects of feeding heat-killed Lactobacillus acidophilus and Lactobacillus casei to Candida albicans-colonized immunodeficient mice. J. Food Prot. 63: 638-644. https://doi.org/10.4315/0362-028X-63.5.638
  19. Pique N, Berlanga M, Minana-Galbis D. 2019. Health benefits of heat-killed (tyndallized) probiotics: An overview. Int. J. Mol. Sci. 20: 2534.
  20. Kim WJ, Hyun JH, Lee NK, Paik HD. 2022. Protective effects of a novel Lactobacillus brevis strain with probiotic characteristics against Staphylococcus aureus lipoteichoic acid-induced intestinal inflammatory response. J. Microbiol. Biotechnol. 32: 205-211. https://doi.org/10.4014/jmb.2110.10034
  21. Bagci EZ, Vodovotz Y, Billiar TR, Ermentrout GB, Bahar I. 2006. Bistability in apoptosis: roles of bax, bcl-2, and mitochondrial permeability transition pores. Biophys. J. 90: 1546-1559. https://doi.org/10.1529/biophysj.105.068122
  22. Wang ZH, Ji Y, Shan W, Zeng B, Raksadawan N, Pastores GM. 2002. Therapeutic effects of astrocytes expressing both tyrosine hydroxylase and brain-derived neurotrophic factor on a rat model of Parkinson's disease. Neurosci. 113: 629-640. https://doi.org/10.1016/S0306-4522(02)00204-X
  23. Song MW, Chung Y, Kim KT, Hong WS, Chang HJ, Paik HD. 2020. Probiotic characteristics of Lactobacillus brevis B13-2 isolated from kimchi and investigation of antioxidant and immune-modulating abilities of its heat-killed cells. LWT-Food Sci. Technol. 128: 109452.
  24. Jang HJ, Kim JH, Lee HS, Paik HD. 2022. Physicochemical analysis of non-fermented probiotic milk with probiotic Lactobacillus plantarum Ln1 isolated from Korea traditional fermented food. Food Sci. Biotechnol. 31: 731-737. https://doi.org/10.1007/s10068-022-01076-1
  25. Cheon MJ, Lim SM, Lee NK, Paik HD. 2020. Probiotic properties and neuroprotective effects of Lactobacillus buchneri KU200793 isolated from Korean fermented foods. Int. J. Mol. Sci. 21: 1227.
  26. Choi GH, Bock HJ, Lee NK, Paik HD. 2022. Soy yogurt using Lactobacillus plantarum 200655 and fructooligosaccharides: neuroprotective effects against oxidative stress. J. Food Sci. Technol. 59: 4870-4879. https://doi.org/10.1007/s13197-022-05575-1
  27. Nirmaladevi D, Venkataramana M, Chandranayaka S, Ramesha A, Jameel NM, Srinivas C. 2014. Neuroprotective effects of bikaverin on H2O2-induced oxidative stress mediated neuronal damage in SH-SY5Y cell line. Cell. Mol. Neurobiol. 34: 973-985. https://doi.org/10.1007/s10571-014-0073-6
  28. Song MW, Jang HJ, Kim KT, Paik HD. 2019. Probiotic and antioxidant properties of novel Lactobacillus brevis KCCM 12203P isolated from kimchi and evaluation of immune-stimulating activities of its heat-killed cells in RAW 264.7 cells. J. Microbiol. Biotechnol. 29: 1894-1903. https://doi.org/10.4014/jmb.1907.07081
  29. Lee NK, Lim SM, Cheon MJ, Paik HD. 2021. Physicochemical analysis of yogurt produced by Leuconostoc mesenteroides H40 and its effects on oxidative stress in neuronal cells. Food Sci. Anim. Resour. 41: 261.
  30. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. 1998. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391: 43-50. https://doi.org/10.1038/34112
  31. Park J, Lee J, Yeom Z, Heo D, Lim YH. 2017. Neuroprotective effect of Ruminococcus albus on oxidatively stressed SH-SY5Y cells and animals. Sci. Rep. 7: 14520.
  32. Jang HM, Lee KE, Kim DH. 2019. The preventive and curative effects of Lactobacillus reuteri NK33 and Bifidobacterium adolescentis NK98 on immobilization stress-induced anxiety/depression and colitis in mice. Nutrients 11: 819.
  33. Liao JF, Cheng YF, You ST, Kuo WC, Huang CW, Chiou JJ, et al. 2020. Lactobacillus plantarum PS128 alleviates neurodegenerative progression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse models of Parkinson's disease. Brain. Behav. Immun. 90: 26-46. https://doi.org/10.1016/j.bbi.2020.07.036
  34. Wang L, Li S, Jiang Y, Zhao Z, Shen Y, Zhang J, et al. 2021. Neuroprotective effect of Lactobacillus plantarum DP189 on MPTP-induced Parkinson's disease model mice. J. Funct. Foods. 85: 104635.
  35. Behl C, Moosmann B. 2002. Antioxidant neuroprotection in Alzheimer's disease as preventive and therapeutic approach. Free Radic. Biol. Med. 33: 182-191. https://doi.org/10.1016/S0891-5849(02)00883-3
  36. Floegel A, Kim DO, Chung SJ, Koo SI, Chun OK. 2011. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 24: 1043-1048. https://doi.org/10.1016/j.jfca.2011.01.008
  37. Nie P, Wang M, Zhao Y, Liu S, Chen L, Xu H. 2021. Protective effect of Lactobacillus rhamnosus GG on TiO2 nanoparticles-induced oxidative stress damage in the liver of young rats. Nanomaterials 11: 803.
  38. Choi BS, Sapkota K, Kim S, Lee HJ, Choi HS, Kim SJ. 2010. Antioxidant activity and protective effects of Tripterygium regelii extract on hydrogen peroxide-induced injury in human dopaminergic cells, SH-SY5Y. Neurochem. Res. 35: 1269-1280. https://doi.org/10.1007/s11064-010-0185-4
  39. Choi DJ, Kim SL, Choi JW, Park YI. 2014. Neuroprotective effects of corn silk maysin via inhibition of H2O2-induced apoptotic cell death in SK-N-MC cells. Life Sci. 109: 57-64. https://doi.org/10.1016/j.lfs.2014.05.020
  40. Sun FL, Zhang L, Zhang RY, Li L. 2011. Tetrahydroxystilbene glucoside protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity. Eur. J. Pharmacol. 660: 283-290. https://doi.org/10.1016/j.ejphar.2011.03.046
  41. Mehri S, Abnous K, Mousavi SH, Shariaty VM, Hosseinzadeh H. 2012. Neuroprotective effect of crocin on acrylamide-induced cytotoxicity in PC12 cells. Cell. Mol. Neurobiol. 32: 227-235. https://doi.org/10.1007/s10571-011-9752-8
  42. Zhao DL, Zou LB, Lin S, Shi JG, Zhu HB. 2008. 6,7-Di-O-glucopyranosyl-esculetin protects SH-SY5Y cells from dopamine-induced cytotoxicity. Eur. J. Pharmacol. 580: 329-338. https://doi.org/10.1016/j.ejphar.2007.11.057
  43. Bavari M, Tabandeh MR, Najafzadeh Varzi H, Bahramzadeh S. 2016. Neuroprotective, antiapoptotic and antioxidant effects of ⳑ-carnitine against caffeine-induced neurotoxicity in SH-SY5Y neuroblastoma cell line. Drug Chem. Toxicol. 39: 157-166. https://doi.org/10.3109/01480545.2015.1063062
  44. Ju HY, Chen SC, Wu KJ, Kuo HC, Hseu YC, Ching H, Wu CR. 2012. Antioxidant phenolic profile from ethyl acetate fraction of Fructus Ligustri Lucidi with protection against hydrogen peroxide-induced oxidative damage in SH-SY5Y cells. Food Chem. Toxicol. 50: 492-502. https://doi.org/10.1016/j.fct.2011.11.036
  45. Kim KB, Lee S, Kim JH. 2020. Neuroprotective effects of urolithin A on H2O2-induced oxidative stress-mediated apoptosis in SK-N-MC cells. Nutr. Res. Pract. 14: 3-11. https://doi.org/10.4162/nrp.2020.14.1.3