DOI QR코드

DOI QR Code

In Vitro Evaluation of Probiotic Properties of Two Novel Probiotic Mixtures, Consti-Biome and Sensi-Biome

  • Received : 2023.03.09
  • Accepted : 2023.06.12
  • Published : 2023.09.28

Abstract

Changes in the gut microbiome cause recolonization by pathogens and inflammatory responses, leading to the development of intestinal disorders. Probiotics administration has been proposed for many years to reverse the intestinal dysbiosis and to enhance intestinal health. This study aimed to evaluate the inhibitory effects of two newly designed probiotic mixtures, Consti-Biome and Sensi-Biome, on two enteric pathogens Staphylococcus aureus and Escherichia coli that may cause intestinal disorders. Additionally, the study was designed to evaluate whether Consti-Biome and Sensi-Biome could modulate the immune response, produce short-chain fatty acids (SCFAs), and reduce gas production. Consti-Biome and Sensi-Biome showed superior adhesion ratios to HT-29 cells and competitively suppressed pathogen adhesion. Moreover, the probiotic mixtures decreased the levels of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-6 and IL-1β. Cell-free supernatants (CFSs) were used to investigate the inhibitory effects of metabolites on growth and biofilms of pathogens. Consti-Biome and Sensi-Biome CFSs exhibited antimicrobial and anti-biofilm activity, where microscopic analysis confirmed an increase in the number of dead cells and the structural disruption of pathogens. Gas chromatographic analysis of the CFSs revealed their ability to produce SCFAs, including acetic, propionic, and butyric acid. SCFA secretion by probiotics may demonstrate their potential activities against pathogens and gut inflammation. In terms of intestinal symptoms regarding abdominal bloating and discomfort, Consti-Biome and Sensi-Biome also inhibited gas production. Thus, these two probiotic mixtures have great potential to be developed as dietary supplements to alleviate the intestinal disorders.

Keywords

References

  1. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. 2014. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11: 506-514.  https://doi.org/10.1038/nrgastro.2014.66
  2. Tassell ML Van, Miller MJ. 2011. Lactobacillus adhesion to mucus. Nutrients 3: 613-636.  https://doi.org/10.3390/nu3050613
  3. Rolfe RD. 2000. The role of probiotic cultures in the control of gastrointestinal health. J. Nutr. 130: 396-402.  https://doi.org/10.1093/jn/130.2.396S
  4. Collado MC, Meriluoto J, Salminen S. 2008. Adhesion and aggregation properties of probiotic and pathogen strains. Eur. Food Res. Technol. 226: 1065-1073.  https://doi.org/10.1007/s00217-007-0632-x
  5. Hosseini A, Nikfar S, Abdollahi M. 2012. Probiotics use to treat irritable bowel syndrome. Expert Opin. Biol. Ther. 12: 1323-1334.  https://doi.org/10.1517/14712598.2012.707179
  6. Jang YJ, Kim WK, Han DH, Lee K, Ko G. 2019. Lactobacillus fermentum species ameliorate dextran sulfate sodium-induced colitis by regulating the immune response and altering gut microbiota. Gut Microbes 10: 696-711.  https://doi.org/10.1080/19490976.2019.1589281
  7. Chapman CMC, Gibson GR, Rowland I. 2011. Health benefits of probiotics: are mixtures more effective than single strains? Eur. J. Nutr. 50: 1-17.  https://doi.org/10.1007/s00394-010-0166-z
  8. Candela M, Perna F, Carnevali P, Vitali B, Ciati R, Gionchetti P, et al. 2008. Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production. Int. J. Food Microbiol. 125: 286-292.  https://doi.org/10.1016/j.ijfoodmicro.2008.04.012
  9. Thananimit S, Pahumunto N, Teanpaisan R. 2022. Characterization of short chain fatty acids produced by selected potential probiotic Lactobacillus strains. Biomolecules 12: 1829. 
  10. Akhtar M, Naqvi SUAS, Liu Q, Pan H, Ma Z, Kong N, et al. 2022. Short chain fatty acids (SCFAs) are the potential immunomodulatory metabolites in controlling Staphylococcus aureus-mediated mastitis. Nutrients 14: 3687. 
  11. Shavakhi A, Shavakhi S, Minakari M, Farzamnia S, Peykar M, Taghipour G, et al. 2014. The effects of multi-strain probiotic compound on symptoms and quality-of-life in patients with irritable bowel syndrome: a randomized placebo-controlled trial. Adv. Biomed. Res. 3: 139. 
  12. Kwoji ID, Aiyegoro OA, Okpeku M, Adeleke MA. 2021. Multi-strain probiotics: synergy among isolates enhances biological activities. Biology (Basel). 10: 1-20.  https://doi.org/10.3390/biology10040322
  13. Kim MG, Jo K, Cho K, Park SS, Suh HJ, Hong KB. 2021. Prebiotics/probiotics mixture induced changes in cecal microbiome and intestinal morphology alleviated the loperamide-induced constipation in rat. Food Sci. Anim. Resour. 41: 527-541.  https://doi.org/10.5851/kosfa.2021.e17
  14. Mezzasalma V, Manfrini E, Ferri E, Sandionigi A, La Ferla B, Schiano I, et al. 2016. A randomized, double-blind, placebo-controlled trial: the efficacy of multispecies probiotic supplementation in alleviating symptoms of irritable bowel syndrome associated with constipation. Biomed Res. Int. 2016: 4740907. 
  15. Martoni CJ, Srivastava S, Leyer GJ. 2020. Lactobacillus acidophilus DDS-1 and Bifidobacterium lactis UABla-12 improve abdominal pain severity and symptomology in irritable bowel syndrome: randomized controlled trial. Nutrients 12: 363. 
  16. Ohkusa T, Koido S, Nishikawa Y, Sato N. 2019. Gut microbiota and chronic constipation: a review and update. Front. Med. 6: 19. 
  17. Zhao S, Chen Q, Kang X, Kong B, Wang Z. 2018. Aberrantly expressed genes and miRNAs in slow transit constipation based on RNA-seq analysis. Biomed Res. Int. 2018: 2617432. 
  18. Duboc H, Rainteau D, Rajca S, Humbert L, Farabos D, Maubert M, et al. 2012. Increase in fecal primary bile acids and dysbiosis in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol. Motil. 24: 513-520.  https://doi.org/10.1111/j.1365-2982.2012.01893.x
  19. Li Y, Xia S, Jiang X, Feng C, Gong S, Ma J, et al. 2021. Gut microbiota and diarrhea: an updated review. Front. Cell. Infect. Microbiol. 11: 625210. 
  20. Wang T, Teng K, Liu G, Liu Y, Zhang J, Zhang X, et al. 2018. Lactobacillus reuteri HCM2 protects mice against enterotoxigenic Escherichia coli through modulation of gut microbiota. Sci. Rep. 8: 17485. 
  21. Noh HJ, Park JM, Kwon YJ, Kim K, Park SY, Kim I, et al. 2022. Immunostimulatory effect of heat-killed probiotics on RAW264.7 macrophages. J. Microbiol. Biotechnol. 32: 638-644.  https://doi.org/10.4014/jmb.2201.01015
  22. Lee J, Kim S, Kang C-H. 2022. Immunostimulatory activity of lactic acid bacteria cell-free supernatants through the activation of NF-κB and MAPK signaling pathways in RAW 264.7 cells. Microorganisms 10: 2247. 
  23. Kimelman H, Shemesh M. 2019. Probiotic bifunctionality of Bacillus subtilis-rescuing lactic acid bacteria from desiccation and antagonizing pathogenic Staphylococcus aureus. Microorganisms 7: 407. 
  24. Monteiro CRAV, Do Carmo MS, Melo BO, Alves MS, Dos Santos CI, Monteiro SG, et al. 2019. In vitro antimicrobial activity and probiotic potential of Bifidobacterium and Lactobacillus against species of Clostridium. Nutrients 11: 448. 
  25. Rajoka MSR, Hayat HF, Sarwar S, Mehwish HM, Ahmad F, Hussain N, et al. 2018. Isolation and evaluation of probiotic potential of lactic acid bacteria isolated from poultry intestine. Microbiology 87: 116-126.  https://doi.org/10.1134/S0026261718010150
  26. Yu X, Avall-Jaaskelainen S, Koort J, Lindholm A, Rintahaka J, Ossowski I von, et al. 2017. A comparative characterization of different host-sourced Lactobacillus ruminis strains and their adhesive, inhibitory, and immunomodulating functions. Front. Microbiol. 8: 657. 
  27. Tripathi S, Bruch D, Kittur DS. 2008. Ginger extract inhibits LPS induced macrophage activation and function. BMC Complement. Altern. Med. 8: 1. 
  28. Pieniz S, Andreazza R, Anghinoni T, Camargo F, Brandelli A. 2014. Probiotic potential, antimicrobial and antioxidant activities of Enterococcus durans strain LAB18s. Food Control 37: 251-256.  https://doi.org/10.1016/j.foodcont.2013.09.055
  29. Jang HJ, Lee NK, Paik HD. 2021. Lactobacillus plantarum G72 showing production of folate and short-chain fatty acids. Microbiol. Biotechnol. Lett. 49: 18-23.  https://doi.org/10.48022/mbl.2009.09010
  30. Anderson JG, Meadows PS, Mullins BW, Patel K. 1980. Gas production by Escherichia coli in selective lactose fermentation media. FEMS Microbiol. Lett. 8: 17-21.  https://doi.org/10.1111/j.1574-6968.1980.tb05022.x
  31. Olvera-Rosales LB, Cruz-Guerrero AE, Ramirez-Moreno E, Quintero-Lira A, Contreras-Lopez E, Jaimez-Ordaz J, et al. 2021. Impact of the gut microbiota balance on the health-disease relationship: the importance of consuming probiotics and prebiotics. Foods 10: 1261. 
  32. Gibson MK, Pesesky MW, Dantas G. 2014. The Yin and Yang of bacterial resilience in the human gut microbiota. J. Mol. Biol. 426: 3866-3876.  https://doi.org/10.1016/j.jmb.2014.05.029
  33. Dembele T, Obdrzalek V, Votava M. 1998. Inhibition of bacterial pathogens by Lactobacilli. Zentralblatt fur Bakteriol. 288: 395-401.  https://doi.org/10.1016/S0934-8840(98)80013-3
  34. Servin AL. 2004. Antagonistic activities of Lactobacilli and Bifidobacteria against microbial pathogens. FEMS Microbiol. Rev. 28: 405-440.  https://doi.org/10.1016/j.femsre.2004.01.003
  35. Malfa P, Brambilla L, Giardina S, Masciarelli M, Squarzanti DF, Carlomagno F, et al. 2023. Evaluation of antimicrobial, antiadhesive and co-aggregation activity of a multi-strain probiotic composition against different urogenital pathogens. Int. J. Mol. Sci. 24: 1323. 
  36. Pan Y, Ning Y, Hu J, Wang Z, Chen X, Zhao X. 2021. The preventive effect of Lactobacillus plantarum ZS62 on DSS-induced IBD by regulating oxidative stress and the immune response. Oxid. Med. Cell. Longev. 2021: 9416794. 
  37. Han KJ, Lee JE, Lee NK, Paik HD. 2020. Antioxidant and anti-inflammatory effect of probiotic Lactobacillus plantarum KU15149 derived from Korean homemade diced-radish kimchi. J. Microbiol. Biotechnol. 30: 591-598.  https://doi.org/10.4014/jmb.2002.02052
  38. Lu J, Wang A, Ansari S, Hershberg RM, McKay DM. 2003. Colonic bacterial superantigens evoke an inflammatory response and exaggerate disease in mice recovering from colitis. Gastroenterology 125: 1785-1795.  https://doi.org/10.1053/j.gastro.2003.09.020
  39. Mirsepasi-Lauridsen HC, Du Z, Struve C, Charbon G, Karczewski J, Krogfelt KA, et al. 2016. Secretion of alpha-hemolysin by Escherichia coli disrupts tight junctions in ulcerative colitis patients. Clin. Transl. Gastroenterol. 7: E149. 
  40. Mirsepasi-Lauridsen HC, Vallance BA, Krogfelt KA, Petersen AM. 2019. Escherichia coli pathobionts associated with inflammatory bowel disease. Clin. Microbiol. Rev. 32: e00060-18. 
  41. Presti I, D'Orazio G, Labra M, La Ferla B, Mezzasalma V, Bizzaro G, et al. 2015. Evaluation of the probiotic properties of new Lactobacillus and Bifidobacterium strains and their in vitro effect. Appl. Microbiol. Biotechnol. 99: 5613-5626.  https://doi.org/10.1007/s00253-015-6482-8
  42. Vemuri R, Shinde T, Shastri MD, Perera AP, Tristram S, Martoni CJ, et al. 2018. A human origin strain Lactobacillus acidophilus DDS-1 exhibits superior in vitro probiotic efficacy in comparison to plant or dairy origin probiotics. Int. J. Med. Sci. 15: 840-848.  https://doi.org/10.7150/ijms.25004
  43. Papadimitriou K, Zoumpopoulou G, Foligne B, Alexandraki V, Kazou M, Pot B, et al. 2015. Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Front. Microbiol. 6: 58. 
  44. Han SK, Shin YJ, Lee DY, Kim KM, Yang SJ, Kim DS, et al. 2021. Lactobacillus rhamnosus HDB1258 modulates gut microbiota-mediated immune response in mice with or without lipopolysaccharide-induced systemic inflammation. BMC Microbiol. 21: 146. 
  45. Hamann L, Alexander C, Stamme C, Zahringer U, Schumann RR. 2005. Acute-phase concentrations of lipopolysaccharide (LPS)-binding protein inhibit innate immune cell activation by different LPS chemotypes via different mechanisms. Infect. Immun. 73: 193-200.  https://doi.org/10.1128/IAI.73.1.193-200.2005
  46. Jones SE, Versalovic J. 2009. Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiol. 9: 35. 
  47. Wang G, Zeng H. 2022. Antibacterial effect of cell-free supernatant from Lactobacillus pentosus L-36 against Staphylococcus aureus from bovine mastitis. Molecules 27: 7627. 
  48. Gueimonde M, G. de losReyes-Gavilan C, Sanchez B. 2011. Antimicrobial components of lactic acid bacteria, pp. 285-329. In Lahtinen S, Ouwehand AC, Salminen S, von Wright A (eds.), Lactic Acid Bacteria, 4th Ed. CRC Press, Boca Raton, Florida. 
  49. Ratajczak W, Ryl A, Mizerski A, Walczakiewicz K, Sipak O, Laszczynska M. 2019. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim. Pol. 66: 1-12.  https://doi.org/10.18388/abp.2018_2648
  50. Alva-Murillo N, Ochoa-Zarzosa A, Lopez-Meza JE. 2012. Short chain fatty acids (propionic and hexanoic) decrease Staphylococcus aureus internalization into bovine mammary epithelial cells and modulate antimicrobial peptide expression. Vet. Microbiol. 155: 324-331.  https://doi.org/10.1016/j.vetmic.2011.08.025
  51. Wei Z, Xiao C, Guo C, Zhang X, Wang Y, Wang J, et al. 2017. Sodium acetate inhibits Staphylococcus aureus internalization into bovine mammary epithelial cells by inhibiting NF-κB activation. Microb. Pathog. 107: 116-121.  https://doi.org/10.1016/j.micpath.2017.03.030
  52. Zhang S, Dogan B, Guo C, Herlekar D, Stewart K, Scherl EJ, et al. 2020. Short chain fatty acids modulate the growth and virulence of pathosymbiont Escherichia coli and host response. Antibiotics 9: 462. 
  53. Lasa J, Peralta D, Dima G, Novillo A, Besasso H, Soifer L. 2012. Comparison of abdominal bloating severity between irritable bowel syndrome patients with high and low levels of breath hydrogen excretion in a lactulose breath test. Rev. Gastroenterol. Mex. 77: 53-57.  https://doi.org/10.1016/j.rgmx.2012.02.002
  54. Kuzela L. 2015. Small intestinal bacterial overgrowth syndrome. Gastroenterol. Hepatol. 69: 70-72. https://doi.org/10.14735/amgh201570