Acknowledgement
This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through Animal Disease Management Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (122001021SB01061382116530000).
References
- Hop HT, Reyes AWB, Huy TXN, Arayan LT, Min WG, Lee HJ, et al. 2017. Activation of NF-κB-mediated TNF-induced antimicrobial immunity is required for the efficient Brucella abortus clearance in RAW 264.7 cells. Front. Cell. Infect. Microbiol. 7: 437.
- Pasquevich KA, Estein SM, Samartino CG, Zwerdling A, Coria LM, Barrionuevo P, et al. 2009. Immunization with recombinant Brucella species outer membrane protein Omp16 or Omp19 in adjuvant induces specific CD4+ and CD8+ T cells as well as systemic and oral protection against Brucella abortus infection. Infect. Immun. 77: 436-445. https://doi.org/10.1128/IAI.01151-08
- He Y. 2012. Analyses of Brucella pathogenesis, host immunity, and vaccine targets using systems biology and bioinformatics. Front. Cell. Infect. Microbiol. 2: 2.
- Xavier MN, Winter MG, Spees AM, Nguyen K, Atluri VL, Silva TMA, et al. 2013. CD4+ T cell-derived IL-10 promotes Brucella abortus persistence via modulation of macrophage function. PLoS Pathog. 9: e1003454.
- Hop HT, Arayan LT, Reyes AWB, Huy TXN, Min WG, Lee HJ, et al. 2018. Heat-stress-modulated induction of NF-κB leads to brucellacidal pro-inflammatory defense against Brucella abortus infection in murine macrophages and in a mouse model. BMC Microbiol. 18: 44.
- Gutierrez MG, Mishra BB, Jordao L, Elliott E, Anes E, Griffiths G. 2008. NF-κB activation controls phagolysosome fusion-mediated killing of mycobacteria by macrophages. J. Immunol. 181: 2651-2663. https://doi.org/10.4049/jimmunol.181.4.2651
- Cox MA, Jackson J, Stanton M, Rojas-Triana A, Bober L, Laverty M, et al. 2009. Short-chain fatty acids act as anti-inflammatory mediators by regulating prostaglandin E2 and cytokines. World J. Gastroenterol. 15: 5549-5557. https://doi.org/10.3748/wjg.15.5549
- Wang J, Wei Z, Zhang X, Wang Y, Yang Z, Fu Y. 2017. Propionate protects against lipopolysaccharide-induced mastitis in mice by restoring blood-milk barrier disruption and suppressing inflammatory response. Front. Immunol. 8: 1108.
- Stranahan LW, Khalaf OH, Garcia-Gonzalez DG, Arenas-Gamboa AM. 2019. Characterization of Brucella canis infection in mice. PLoS One 14: e0218809.
- Inan MS, Rasoulpour RJ, Yin L, Hubbard AK, Rosenberg DW, Giardina C. 2000. The luminal short-chain fatty acid butyrate modulates NF-κB activity in a human colonic epithelial cell line. Gastroenterology 118: 724-734. https://doi.org/10.1016/S0016-5085(00)70142-9
- Liu T, Li J, Liu Y, Xiao N, Suo H, Xie K, et al. 2012. Short-chain fatty acids suppress lipopolysaccharide-induced production of nitric oxide and proinflammatory cytokines through inhibition of NF-κB pathway in RAW264.7 cells. Inflammation 35: 1676-1684. https://doi.org/10.1007/s10753-012-9484-z
- Celli J. 2006. Surviving inside a macrophage: the many ways of Brucella. Res. Microbiol. 157: 93-98. https://doi.org/10.1016/j.resmic.2005.10.002
- Jeong S, Kim HY, Kim AR, Yun CH, Han SH. 2019. Propionate ameliorates Staphylococcus aureus skin infection by attenuating bacterial growth. Front. Microbiol. 10: 1363.
- Guinan J, Wang S, Hazbun TR, Yadav H, Thangamani S. 2019. Antibiotic-induced decreases in the levels of microbial-derived short-chain fatty acids correlate with increased gastrointestinal colonization of Candida albicans. Sci. Rep. 9: 8872.
- Zhang J, Zhang H, Liu M, Lan Y, Sun H, Mai K, et al. 2020. Short-chain fatty acids promote intracellular bactericidal activity in head kidney macrophages from Turbot (Scophthalmus maximus L.) via hypoxia inducible factor-1α. Front. Immunol. 11: 615536.
- Vinolo MAR, Rodrigues HG, Hatanaka E, Sato FT, Sampaio SC, Curi R. 2011. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. J. Nutr. Biochem. 22: 849-855. https://doi.org/10.1016/j.jnutbio.2010.07.009
- Meijer K, De Vos P, Priebe MG. 2010. Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health? Curr. Opin. Clin. Nutr. Metab. Care 13: 715-721. https://doi.org/10.1097/MCO.0b013e32833eebe5
- Silva LG, Ferguson BS, Avila AS, Faciola AP. 2018. Sodium propionate and sodium butyrate effects on histone deacetylase (HDAC) activity, histone acetylation, and inflammatory gene expression in bovine mammary epithelial cells. J. Anim. Sci. 96: 5244-5252.
- Jiang X, Baldwin CL. 1993. Effects of cytokines on intracellular growth of Brucella abortus. Infect. Immun. 61: 124-134. https://doi.org/10.1128/iai.61.1.124-134.1993
- Van Deun K, Haesebrouck F, Van Immerseel F, Ducatelle R, Pasmans F. 2008. Short-chain fatty acids and L-lactate as feed additives to control Campylobacter jejuni infections in broilers. Avian Pathol. 37: 379-383. https://doi.org/10.1080/03079450802216603
- Filippone A, Lanza M, Campolo M, Casili G, Paterniti I, Cuzzocrea S, et al. 2020. The anti-inflammatory and antioxidant effects of sodium propionate. Int. J. Mol. Sci. 21: 3026.
- Luhrs H, Gerke T, Muller JG, Melcher R, Schauber J, Boxberger F, et al. 2002. Butyrate inhibits NF-κB activation in lamina propria macrophages of patients with ulcerative colitis. Scand. J. Gastroenterol. 37: 458-466. https://doi.org/10.1080/003655202317316105
- Singh N, Thangaraju M, Prasad PD, Martin PM, Lambert NA, Boettger T, et al. 2010. Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases. J. Biol. Chem. 285: 27601-27608. https://doi.org/10.1074/jbc.M110.102947