DOI QR코드

DOI QR Code

Anti-Inflammatory Efficacy of Human-Derived Streptococcus salivarius on Periodontopathogen-Induced Inflammation

  • Dong-Heon Baek (Department of Oral Microbiology and Immunology, College of Dentistry, Dankook University) ;
  • Sung-Hoon Lee (Department of Oral Microbiology and Immunology, College of Dentistry, Dankook University)
  • Received : 2023.02.02
  • Accepted : 2023.04.28
  • Published : 2023.08.28

Abstract

Streptococcus salivarius is a beneficial bacterium in oral cavity, and some strains of this bacterium are known to be probiotics. The purpose of this study was to investigate the anti-inflammatory effect and mechanism of S. salivarius G7 lipoteichoic acid (LTA) on lipopolysaccharide (LPS) and LTA of periodontopathogens. The surface molecules of S. salivarius G7 was extracted, and single- or co-treated on human monocytic cells with LPS and LTA of periodontopathogens. The induction of cytokine expression was evaluated by real-time PCR and ELISA. After labeling fluorescence on LPS and LTA of periodontopathogens, it was co-treated with S. salivarius LTA to the cell. The bound LPS and LTA were measured by a flow cytometer. Also, the biding assay of the LPS and LTA to CD14 and LPS binding protein (LBP) was performed. The surface molecules of S. salivarius G7 did not induce the expression of inflammatory cytokines, and S. salivarius G7 LTA inhibited the inflammatory cytokines induced by LPS and LTA of periodontopathogens. S. salivarius G7 LTA inhibited the binding of its LPS and LTA to cells. Also, S. salivarius G7 LTA blocked the binding of its LPS and LTA to CD14 and LBP. S. salivarius G7 has an inhibitory effect on inflammation induced by LPS or LTA of periodontopathogens, and may be a candidate probiotics for prevention of periodontitis.

Keywords

Acknowledgement

This study was supported by a research fund of Dankook University in 2020.

References

  1. Cekici A, Kantarci A, Hasturk H, Van Dyke TE. 2014. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontol 2000 64: 57-80. https://doi.org/10.1111/prd.12002
  2. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL, Jr. 1998. Microbial complexes in subgingival plaque. J. Clin. Periodontol. 25: 134-144. https://doi.org/10.1111/j.1600-051X.1998.tb02419.x
  3. Aruni AW, Mishra A, Dou Y, Chioma O, Hamilton BN, Fletcher HM. 2015. Filifactor alocis--a new emerging periodontal pathogen. Microbes Infect. 17: 517-530. https://doi.org/10.1016/j.micinf.2015.03.011
  4. Montagner F, Jacinto RC, Signoretti FG, Sanches PF, Gomes BP. 2012. Clustering behavior in microbial communities from acute endodontic infections. J. Endod. 38: 158-162. https://doi.org/10.1016/j.joen.2011.09.029
  5. Yoo HJ, Lee SH. 2022. Virulence of Filifactor alocis lipoteichoic acid on human gingival fibroblast. Arch. Oral Biol. 135: 105370.
  6. Park HK, Shim SS, Kim SY, Park JH, Park SE, Kim HJ, et al. 2005. Molecular analysis of colonized bacteria in a human newborn infant gut. J. Microbiol. 43: 345-353. https://doi.org/10.4055/jkoa.2008.43.3.353
  7. Carlsson J, Grahnen H, Jonsson G, Wikner S. 1970. Early establishment of Streptococcus salivarius in the mouth of infants. J. Dent. Res. 49: 415-418. https://doi.org/10.1177/00220345700490023601
  8. Bourdichon F, Budde-Niekiel A, Dubois A, Fritz D, Hatte J, Laulund S, et al. 2018. Bulletin of the IDF No 495/2018; Inventory of Microbial Food Cultures with Safety Demonstration in Fermented Food Products: Update of the Bulletin of the IDF No. 455, 2012, pp. Ed. International Dairy Federation.
  9. Wescombe PA, Hale JD, Heng NC, Tagg JR. 2012. Developing oral probiotics from Streptococcus salivarius. Future Microbiol. 7: 1355-1371. https://doi.org/10.2217/fmb.12.113
  10. Masdea L, Kulik EM, Hauser-Gerspach I, Ramseier AM, Filippi A, Waltimo T. 2012. Antimicrobial activity of Streptococcussalivarius K12 on bacteria involved in oral malodour. Arch. Oral Biol. 57: 1041-1047. https://doi.org/10.1016/j.archoralbio.2012.02.011
  11. Staskova A, Sondorova M, Nemcova R, Kacirova J, Madar M. 2021. Antimicrobial and antibiofilm activity of the probiotic strain Streptococcus salivarius K12 against oral potential pathogens. Antibiotics (Basel) 10.
  12. Jansen PM, Abdelbary MMH, Conrads G. 2021. A concerted probiotic activity to inhibit periodontitis-associated bacteria. PLoS One 16: e0248308.
  13. Yoo HJ, Jwa SK, Kim DH, Ji YJ. 2020. Inhibitory effect of Streptococcus salivarius K12 and M18 on halitosis in vitro. Clin. Exp. Dent. Res. 6: 207-214. https://doi.org/10.1002/cre2.269
  14. Fields FR, Li X, Navarre WW, Naito M. 2020. Complete genome sequence of Streptococcus salivarius DB-B5, a novel probiotic candidate isolated from the supragingival plaque of a healthy female subject. Microbiol. Resour. Announc. 9: e00916-20.
  15. Poorni S, Nivedhitha MS, Srinivasan M, Balasubramaniam A. 2022. Effect of probiotic Streptococcus salivarius K12 and M18 lozenges on the cariogram parameters of patients with high caries risk: a randomised control trial. Cureus 14: e23282.
  16. Srikham K, Daengprok W, Niamsup P, Thirabunyanon M. 2021. Characterization of Streptococcus salivarius as new probiotics derived from human breast milk and their potential on proliferative inhibition of liver and breast cancer cells and antioxidant activity. Front. Microbiol. 12: 797445.
  17. Kim YJ, Lee SH. 2014. Reducing the bioactivity of Tannerella forsythia lipopolysaccharide by Porphyromonas gingivalis. J. Microbiol. 52: 702-708. https://doi.org/10.1007/s12275-014-4324-5
  18. Tiong HK, Hartson S, Muriana PM. 2015. Comparison of five methods for direct extraction of surface proteins from Listeria monocytogenes for proteomic analysis by orbitrap mass spectrometry. J. Microbiol. Methods 110: 54-60. https://doi.org/10.1016/j.mimet.2015.01.004
  19. Romani Vestman N, Chen T, Lif Holgerson P, Ohman C, Johansson I. 2015. Oral microbiota shift after 12-week supplementation with Lactobacillus reuteri DSM 17938 and PTA 5289; a randomized control trial. PLoS One 10: e0125812.
  20. Anusha RL, Umar D, Basheer B, Baroudi K. 2015. The magic of magic bugs in oral cavity: probiotics. J. Adv. Pharm. Technol. Res. 6: 43-47. https://doi.org/10.4103/2231-4040.154526
  21. Bowen DM. 2013. Probiotics and oral health. J. Dent. Hyg. 87: 5-9.
  22. Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WP, Ryan CM, et al. 2002. Genome shuffling of Lactobacillus for improved acid tolerance. Nat. Biotechnol. 20: 707-712. https://doi.org/10.1038/nbt0702-707
  23. Wang RM, Li N, Zheng K, Hao JF. 2018. Enhancing acid tolerance of the probiotic bacterium Lactobacillus acidophilus NCFM with trehalose. FEMS Microbiol Lett. doi: 10.1093/femsec/fny217. Online ahead of print.
  24. Akira S, Takeda K. 2004. Toll-like receptor signalling. Nat. Rev. Immunol. 4: 499-511. https://doi.org/10.1038/nri1391
  25. Al-Qutub MN, Braham PH, Karimi-Naser LM, Liu X, Genco CA, Darveau RP. 2006. Hemin-dependent modulation of the lipid A structure of Porphyromonas gingivalis lipopolysaccharide. Infect. Immun. 74: 4474-4485. https://doi.org/10.1128/IAI.01924-05
  26. Henneke P, Morath S, Uematsu S, Weichert S, Pfitzenmaier M, Takeuchi O, et al. 2005. Role of lipoteichoic acid in the phagocyte response to group B streptococcus. J. Immunol. 174: 6449-6455. https://doi.org/10.4049/jimmunol.174.10.6449
  27. Asai Y, Hashimoto M, Ogawa T. 2003. Treponemal glycoconjugate inhibits Toll-like receptor ligand-induced cell activation by blocking LPS-binding protein and CD14 functions. Eur. J. Immunol. 33: 3196-3204. https://doi.org/10.1002/eji.200324219
  28. Lee SH, Kim KK, Rhyu IC, Koh S, Lee DS, Choi BK. 2006. Phenol/water extract of Treponema socranskii subsp. socranskii as an antagonist of Toll-like receptor 4 signalling. Microbiology (Reading) 152: 535-546. https://doi.org/10.1099/mic.0.28470-0
  29. Yoshimura A, Kaneko T, Kato Y, Golenbock DT, Hara Y. 2002. Lipopolysaccharides from periodontopathic bacteria Porphyromonas gingivalis and Capnocytophaga ochracea are antagonists for human Toll-like receptor 4. Infect. Immun. 70: 218-225. https://doi.org/10.1128/IAI.70.1.218-225.2002
  30. Wicken AJ, Evans JD, Knox KW. 1986. Critical micelle concentrations of lipoteichoic acids. J. Bacteriol. 166: 72-77. https://doi.org/10.1128/jb.166.1.72-77.1986
  31. Schroder NW, Schumann RR. 2005. Non-LPS targets and actions of LPS binding protein (LBP). J. Endotoxin. Res. 11: 237-242. https://doi.org/10.1177/09680519050110040901
  32. Sugawara S, Arakaki R, Rikiishi H, Takada H. 1999. Lipoteichoic acid acts as an antagonist and an agonist of lipopolysaccharide on human gingival fibroblasts and monocytes in a CD14-dependent manner. Infect. Immun. 67: 1623-1632. https://doi.org/10.1128/IAI.67.4.1623-1632.1999
  33. Fischer W. 1994. Lipoteichoic acid and lipids in the membrane of Staphylococcus aureus. Med. Microbiol. Immunol. 183: 61-76. https://doi.org/10.1007/BF00277157
  34. Han SH, Kim JH, Martin M, Michalek SM, Nahm MH. 2003. Pneumococcal lipoteichoic acid (LTA) is not as potent as staphylococcal LTA in stimulating Toll-like receptor 2. Infect. Immun. 71: 5541-5548. https://doi.org/10.1128/IAI.71.10.5541-5548.2003
  35. Jimenez-Dalmaroni MJ, Radcliffe CM, Harvey DJ, Wormald MR, Verdino P, Ainge GD, et al. 2015. Soluble human TLR2 ectodomain binds diacylglycerol from microbial lipopeptides and glycolipids. Innate Immun. 21: 175-193. https://doi.org/10.1177/1753425914524077
  36. Hermann C, Spreitzer I, Schroder NW, Morath S, Lehner MD, Fischer W, et al. 2002. Cytokine induction by purified lipoteichoic acids from various bacterial species--role of LBP, sCD14, CD14 and failure to induce IL-12 and subsequent IFN-gamma release. Eur. J. Immunol. 32: 541-551. https://doi.org/10.1002/1521-4141(200202)32:2<541::AID-IMMU541>3.0.CO;2-P