Acknowledgement
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2022R1A2C1011642).
References
- Yu H, Guo P, Xie X, Wang Y, Chen G. 2017. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J. Cell. Mol. Med. 21: 648-657. https://doi.org/10.1111/jcmm.13008
- Nagamalleswari E, Rao S, Vasu K, Nagaraja V. 2017. Restriction endonuclease triggered bacterial apoptosis as a mechanism for long time survival. Nucleic Acids Res. 45: 8423-834. https://doi.org/10.1093/nar/gkx576
- Dewachter L, Verstraeten N, Fauvart M, Michiels J. 2016. The bacterial cell cycle checkpoint protein Obg and its role in programmed cell death. Microb. Cell. 3: 255-256. https://doi.org/10.15698/mic2016.06.507
- Allocati N, Masulli M, Di Ilio C, De Laurenzi V. 2015. Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis. 6: e1609.
- Tanouchi Y, Lee AJ, Meredith H, You L. 2013. Programmed cell death in bacteria and implications for antibiotic therapy. Trends Microbiol. 21: 265-270. https://doi.org/10.1016/j.tim.2013.04.001
- Andryukov BG, Somova LM, Timchenko NF. 2018. Molecular and genetic characteristics of cell death in prokaryotes. Mol. Genet. Microbiol. Virol. 33: 73-83. https://doi.org/10.3103/S0891416818020039
- Lewis K. 2000. Programmed death in bacteria. Microbiol. Mol. Biol. Rev. 64: 503-514. https://doi.org/10.1128/MMBR.64.3.503-514.2000
- Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. 2012. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149: 1060-1072. https://doi.org/10.1016/j.cell.2012.03.042
- Battaglia AM, Chirillo R, Aversa I, Sacco A, Costanzo F, Biamonte F. 2020. Ferroptosis and cancer: mitochondria meet the "iron maiden" cell death. Cells 9: 1505.
- Wang H, Liu C, Zhao Y, Gao G. 2020. Mitochondria regulation in ferroptosis. Eur. J. Cell Biol. 99: 151058.
- Chen X, Comish PB, Tang D, Kang R. 2021. Characteristics and biomarkers of ferroptosis. Front. Cell Dev. Biol. 9: 637162.
- Latunde-Dada GO. 2017. Ferroptosis: role of lipid peroxidation, iron and ferritinophagy. Biochim. Biophys. Acta Gen. Subj. 1861: 1893-900. https://doi.org/10.1016/j.bbagen.2017.05.019
- Cao JY, Dixon SJ. 2016. Mechanisms of ferroptosis. Cell. Mol. Life Sci. 73: 2195-209. https://doi.org/10.1007/s00018-016-2194-1
- Yang WS, Stockwell BR. 2016. Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 26: 165-176. https://doi.org/10.1016/j.tcb.2015.10.014
- Chen X, Yu C, Kang R, Tang D. 2020. Iron metabolism in ferroptosis. Front. Cell Dev. Biol. 8: 590226.
- Stoyanovsky DA, Tyurina YY, Shrivastava I, Bahar I, Tyurin VA, Protchenko O, et al. 2019. Iron catalysis of lipid peroxidation in ferroptosis: regulated enzymatic or random free radical reaction? Free Radic. Biol. Med. 133: 153-161. https://doi.org/10.1016/j.freeradbiomed.2018.09.008
- Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, et al. 2016. Ferroptosis: process and function. Cell Death Differ. 23: 369-379. https://doi.org/10.1038/cdd.2015.158
- Bayles KW. 2014. Bacterial programmed cell death: making sense of a paradox. Nat. Rev. Microbiol. 12: 63-69. https://doi.org/10.1038/nrmicro3136
- Dewachter L, Verstraeten N, Monteyne D, Kint CI, Versees W, Perez-Morga D, et al. 2015. A Single-amino-acid substitution in Obg activates a new programmed cell death pathway in Escherichia coli. MBio 6: e 01935-15.
- Kohanski MA, Dwyer DJ, Collins JJ. 2010. How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol. 8: 423-435. https://doi.org/10.1038/nrmicro2333
- Peeters SH, de Jonge MI. 2018. For the greater good: programmed cell death in bacterial communities. Microbiol. Res. 207: 161-169. https://doi.org/10.1016/j.micres.2017.11.016
- Mruk I, Kaczorowski T, Witczak A. 2019. Natural tuning of restriction endonuclease synthesis by cluster of rare arginine codons. Sci. Rep. 9: 5808.
- Schippers JH, Nguyen HM, Lu D, Schmidt R, Mueller-Roeber B. 2012. ROS homeostasis during development: an evolutionary conserved strategy. Cell. Mol. Life Sci. 69: 3245-3257. https://doi.org/10.1007/s00018-012-1092-4
- Hong Y, Li L, Luan G, Drlica K, Zhao X. 2017. Contribution of reactive oxygen species to thymineless death in Escherichia coli. Nat. Microbiol. 2: 1667-1675. https://doi.org/10.1038/s41564-017-0037-y
- Lee B, Hwang JS, Lee DG. 2019. Induction of apoptosis-like death by periplanetasin-2 in Escherichia coli and contribution of SOS genes. Appl. Microbiol. Biotechnol. 103: 1417-1427. https://doi.org/10.1007/s00253-018-9561-9
- Salehi F, Behboudi H, Kavoosi G, Ardestani SK. 2018. Oxidative DNA damage induced by ROS-modulating agents with the ability to target DNA: a comparison of the biological characteristics of citrus pectin and apple pectin. Sci. Rep. 8: 13902.
- Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. 2019. ROS and the DNA damage response in cancer. Redox Biol. 25: 101084.
- Basu S, De D, Dev Khanna H, Kumar A. 2014. Lipid peroxidation, DNA damage and total antioxidant status in neonatal hyperbilirubinemia. J. Perinatol. 34: 519-523. https://doi.org/10.1038/jp.2014.45
- Crawford MA, Tapscott T, Fitzsimmons LF, Liu L, Reyes AM, Libby SJ, et al. 2016. Redox-active sensing by bacterial DksA transcription factors is determined by cysteine and zinc content. MBio 7: e02161-15.
- Dwyer DJ, Belenky PA, Yang JH, MacDonald IC, Martell JD, Takahashi N, et al. 2014. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc. Natl. Acad. Sci. USA 111: E2100-9. https://doi.org/10.1073/pnas.1401876111
- Zhao X, Drlica K. 2014. Reactive oxygen species and the bacterial response to lethal stress. Curr. Opin. Microbiol. 21: 1-6. https://doi.org/10.1016/j.mib.2014.06.008
- Belenky P, Ye JD, Porter CB, Cohen NR, Lobritz MA, Ferrante T, et al. 2015. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage. Cell Rep. 13: 968-980. https://doi.org/10.1016/j.celrep.2015.09.059
- Lobritz MA, Belenky P, Porter CB, Gutierrez A, Yang JH, Schwarz EG, et al. 2015. Antibiotic efficacy is linked to bacterial cellular respiration. Proc. Natl. Acad. Sci. USA 112: 8173-8180. https://doi.org/10.1073/pnas.1509743112
- Hemnani T, Parihar MS. 1998. Reactive oxygen species and oxidative DNA damage. Indian J. Physiol. Pharmacol. 42: 440-452.
- Winterbourn CC. 1995. Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol. Lett. 82-83: 969-974. https://doi.org/10.1016/0378-4274(95)03532-X
- Shan X, Li S, Sun B, Chen Q, Sun J, He Z, et al. 2020. Ferroptosis-driven nanotherapeutics for cancer treatment. J. Control. Release 319: 322-332. https://doi.org/10.1016/j.jconrel.2020.01.008
- Zeng C, Tang H, Chen H, Li M, Xiong D. 2020. Ferroptosis: a new approach for immunotherapy. Cell Death Discov. 6: 122.
- Shan X, Li S, Sun B, Chen Q, Sun J, He Z, et al. 2020. Ferroptosis-driven nanotherapeutics for cancer treatment. J .Control. Release 319: 322-332. https://doi.org/10.1016/j.jconrel.2020.01.008
- Conrad M, Kagan VE, Bayir H, Pagnussat GC, Head B, Traber MG, et al. 2018. Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev. 32: 602-619. https://doi.org/10.1101/gad.314674.118
- Bachhawat AK, Ganguli D, Kaur J, Kasturia N, Thakur A, Kaur H, et al. 2009. Glutathione production in yeast. Yeast Biotechnol. Divers. Appl. 2009: 259-280. https://doi.org/10.1007/978-1-4020-8292-4_13
- Manfredini V, Roehrs R, Peralba MC, Henriques JA, Saffi J, Ramos AL, et al. 2004. Glutathione peroxidase induction protects Saccharomyces cerevisiae sod1deltasod2delta double mutants against oxidative damage. Braz. J. Med. Biol. Res. 37: 159-165. https://doi.org/10.1590/S0100-879X2004000200001
- Kho CW, Lee PY, Bae KH, Cho S, Lee ZW, Park BC, et al. 2006. Glutathione peroxidase 3 of Saccharomyces cerevisiae regulates the activity of methionine sulfoxide reductase in a redox state-dependent way. Biochem. Biophys. Res. Commun. 348: 25-35. https://doi.org/10.1016/j.bbrc.2006.06.067