Acknowledgement
This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HP20C0131).
References
- Bergqvist, C. and Ezzedine, K. (2020) Vitiligo: a review. Dermatology 236, 571-592. https://doi.org/10.1159/000506103
- Bergqvist, C. and Ezzedine, K. (2021) Vitiligo: a focus on pathogenesis and its therapeutic implications. J. Dermatol. 48, 252-270. https://doi.org/10.1111/1346-8138.15743
- Chang, W.-L. and Ko, C.-H. (2023) The role of oxidative stress in vitiligo: an update on its pathogenesis and therapeutic implications. Cells 12, 936.
- Chen, S., Wang, X., Nisar, M. F., Lin, M. and Zhong, J. L. (2019) Heme oxygenases: cellular multifunctional and protective molecules against UV-induced oxidative stress. Oxid. Med. Cell. Longev. 2019, 5416728.
- da Silva, I. V., Santos, A. C., Matos, A., da Silva, A. P., Soveral, G., Rebelo, I. and Bicho, M. (2021) Association of Aquaporin-3, Aquaporin-7, NOS3 and CYBA polymorphisms with hypertensive disorders in women. Pregnancy Hypertens. 24, 44-49. https://doi.org/10.1016/j.preghy.2021.02.008
- Delmas, V. and Larue, L. (2019) Molecular and cellular basis of depigmentation in vitiligo patients. Exp. Dermatol. 28, 662-666. https://doi.org/10.1111/exd.13858
- Denat, L., Kadekaro, A. L., Marrot, L., Leachman, S. A. and AbdelMalek, Z. A. (2014) Melanocytes as instigators and victims of oxidative stress. J. Invest. Dermatol. 134, 1512-1518. https://doi.org/10.1038/jid.2014.65
- Jian, Z., Li, K., Song, P., Zhu, G., Zhu, L., Cui, T., Liu, B., Tang, L., Wang, X. and Wang, G. (2014) Impaired activation of the Nrf2-ARE signaling pathway undermines H2O2-induced oxidative stress response: a possible mechanism for melanocyte degeneration in vitiligo. J. Invest. Dermatol. 134, 2221-2230. https://doi.org/10.1038/jid.2014.152
- Kim, H., Park, C. S. and Lee, A. Y. (2017) Reduced Nrf2 activation in PI3K phosphorylation-impaired vitiliginous keratinocytes increases susceptibility to ROS-generating chemical-induced apoptosis. Environ. Toxicol. 32, 2481-2491. https://doi.org/10.1002/tox.22461
- Kim, N.-H. and Lee, A.-Y. (2010) Reduced aquaporin3 expression and survival of keratinocytes in the depigmented epidermis of vitiligo. J. Invest. Dermatol. 130, 2231-2239. https://doi.org/10.1038/jid.2010.99
- Laddha, N. C., Dwivedi, M., Mansuri, M. S., Gani, A. R., Ansarullah, M., Ramachandran, A., Dalai, S. and Begum, R. (2013) Vitiligo: interplay between oxidative stress and immune system. Exp. Dermatol. 22, 245-250. https://doi.org/10.1111/exd.12103
- Lee, A.-Y. (2012) Role of keratinocytes in the development of vitiligo. Ann. Dermatol. 24, 115-125. https://doi.org/10.5021/ad.2012.24.2.115
- Lee, A.-Y., Kim, N.-H., Choi, W.-I. and Youm, Y.-H. (2005) Less keratinocyte-derived factors related to more keratinocyte apoptosis in depigmented than normally pigmented suction-blistered epidermis may cause passive melanocyte death in vitiligo. J. Invest. Dermatol. 124, 976-983. https://doi.org/10.1111/j.0022-202X.2005.23667.x
- Lee, S. E., Kwon, K., Oh, S. W., Park, S. J., Yu, E., Kim, H., Yang, S., Park, J. Y., Chung, W.-J., Cho, J. Y. and Lee, J. (2021) Mechanisms of resorcinol antagonism of benzo[a]pyrene-induced damage to human keratinocytes. Biomol. Ther. (Seoul) 29, 227-233. https://doi.org/10.4062/biomolther.2020.083
- Lin, X., Meng, X., Song, Z. and Lin, J. (2020) Nuclear factor erythroid 2-related factor 2 (Nrf2) as a potential therapeutic target for vitiligo. Arch. Biochem. Biophys. 696, 108670.
- Maresca, V., Roccella, M., Roccella, F., Camera, E., Del Porto, G., Passi, S., Grammatico, P. and Picardo, M. (1997) Increased sensitivity to peroxidative agents as a possible pathogenic factor of melanocyte damage in vitiligo. J. Invest. Dermatol. 109, 310-313. https://doi.org/10.1111/1523-1747.ep12335801
- Marrot, L., Jones, C., Perez, P. and Meunier, J. R. (2008) The significance of Nrf2 pathway in (photo)-oxidative stress response in melanocytes and keratinocytes of the human epidermis. Pigment Cell Melanoma Res. 21, 79-88. https://doi.org/10.1111/j.1755-148X.2007.00424.x
- Milkovic, L. and Cipak Gasparovic, A. (2021) AQP3 and AQP5-potential regulators of redox status in breast cancer. Molecules 26, 2613.
- Miller, E. W., Dickinson, B. C. and Chang, C. J. (2010) Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc. Natl. Acad. Sci. U. S. A. 107, 15681-15686. https://doi.org/10.1073/pnas.1005776107
- Motohashi, H. and Yamamoto, M. (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol. Med. 10, 549-557. https://doi.org/10.1016/j.molmed.2004.09.003
- Pang, Y., Wu, S., He, Y., Nian, Q., Lei, J., Yao, Y., Guo, J. and Zeng, J. (2021) Plant-derived compounds as promising therapeutics for vitiligo. Front. Pharmacol. 12, 685116.
- Rodrigues, M., Ezzedine, K., Hamzavi, I., Pandya, A. G., Harris, J. E. and Group, V. W. (2017) New discoveries in the pathogenesis and classification of vitiligo. J. Am. Acad. Dermatol. 77, 1-13. https://doi.org/10.1016/j.jaad.2016.10.048
- Romano-Lozano, V., Cruz-Avelar, A. and Peralta-Pedrero, M. (2022) Nuclear factor erythroid 2-related factor 2 in vitiligo. Actas Dermosifiliogr. 113, 705-711. https://doi.org/10.1016/j.ad.2022.02.025
- Saha, S., Buttari, B., Panieri, E., Profumo, E. and Saso, L. (2020) An overview of Nrf2 signaling pathway and its role in inflammation. Molecules 25, 5474.
- Schallreuter, K. U., Wood, J. M. and Berger, J. (1991) Low catalase levels in the epidermis of patients with vitiligo. J. Invest. Dermatol. 97, 1081-1085. https://doi.org/10.1111/1523-1747.ep12492612
- Seneschal, J., Boniface, K., D'Arino, A. and Picardo, M. (2021) An update on Vitiligo pathogenesis. Pigment Cell Melanoma Res. 34, 236-243. https://doi.org/10.1111/pcmr.12949
- Wang, Y., Chen, D., Liu, Y., Zhang, Y., Duan, C., Otkur, W., Chen, H., Liu, X., Xia, T. and Qi, H. (2021) AQP3-mediated H2O2 uptake inhibits LUAD autophagy by inactivating PTEN. Cancer Sci. 112, 3278-3292. https://doi.org/10.1111/cas.15008
- Wang, Y., Li, S. and Li, C. (2019) Perspectives of new advances in the pathogenesis of vitiligo: from oxidative stress to autoimmunity. Med. Sci. Monit. 25, 1017-1023. https://doi.org/10.12659/MSM.914898
- White, M. K., Kaminski, R., Young, W. B., Roehm, P. C. and Khalili, K. (2017) CRISPR editing technology in biological and biomedical investigation. J. Cell. Biochem. 118, 3586-3594. https://doi.org/10.1002/jcb.26099
- Xie, H., Zhou, F., Liu, L., Zhu, G., Li, Q., Li, C. and Gao, T. (2016) Vitiligo: how do oxidative stress-induced autoantigens trigger autoimmunity? J. Dermatol. Sci. 81, 3-9. https://doi.org/10.1016/j.jdermsci.2015.09.003
- Xuan, Y., Yang, Y., Xiang, L. and Zhang, C. (2022) The role of oxidative stress in the pathogenesis of vitiligo: a culprit for melanocyte death. Oxid. Med. Cell. Longev. 2022, 8498472.
- Zhang, X., Rosenstein, B. S., Wang, Y., Lebwohl, M. and Wei, H. (1997) Identification of possible reactive oxygen species involved in ultraviolet radiation-induced oxidative DNA damage. Free Radic. Biol. Med. 23, 980-985. https://doi.org/10.1016/S0891-5849(97)00126-3