DOI QR코드

DOI QR Code

Aquaporin-3 Downregulation in Vitiligo Keratinocytes Increases Oxidative Stress of Melanocytes

  • Nan-Hyung Kim (Department of Dermatology, Dongguk University School of Medicine) ;
  • Ha Jung Kim (Department of Dermatology, Dongguk University School of Medicine) ;
  • Ai-Young Lee (Department of Dermatology, Dongguk University School of Medicine)
  • Received : 2023.06.13
  • Accepted : 2023.08.08
  • Published : 2023.11.01

Abstract

Oxidative stress-induced melanocyte apoptosis is linked to the immune system and plays a critical role in the pathogenesis of vitiligo. Aquaporin-3 (AQP3), which is downregulated in vitiligo keratinocytes, regulates intracellular H2O2 accumulation. However, the role of AQP3 in oxidative stress is uncertain in vitiligo. This study investigated the effect of downregulated AQP3 on oxidative stress in vitiligo using lesional and non-lesional skin specimen sets from vitiligo patients and primary cultured adult normal human epidermal keratinocytes, with or without downregulation and overexpression of AQP3 in the presence or absence of H2O2 treatment. The levels of nuclear factor E2-related factor 2 (NRF2) and/or its main target, NAD(P)H quinone dehydrogenase 1 (NQO-1), were lower in the lesional keratinocytes and cultured keratinocytes with AQP3 knockdown, but were increased in keratinocytes upon AQP3 overexpression. Ratios of NRF2 nuclear translocation and NQO-1 expression levels were further reduced in AQP3-knockdown keratinocytes following H2O2 treatment. The conditioned media from AQP3-knockdown keratinocytes treated with H2O2 contained higher concentrations of reactive oxygen species (ROS). Moreover, the number of viable melanocytes was reduced when the conditioned media were added to the culture media. Overall, AQP3 downregulation in the keratinocytes of patients with vitiligo can induce oxidative stress in neighboring melanocytes, leading to melanocyte death.

Keywords

Acknowledgement

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HP20C0131).

References

  1. Bergqvist, C. and Ezzedine, K. (2020) Vitiligo: a review. Dermatology 236, 571-592. https://doi.org/10.1159/000506103
  2. Bergqvist, C. and Ezzedine, K. (2021) Vitiligo: a focus on pathogenesis and its therapeutic implications. J. Dermatol. 48, 252-270. https://doi.org/10.1111/1346-8138.15743
  3. Chang, W.-L. and Ko, C.-H. (2023) The role of oxidative stress in vitiligo: an update on its pathogenesis and therapeutic implications. Cells 12, 936.
  4. Chen, S., Wang, X., Nisar, M. F., Lin, M. and Zhong, J. L. (2019) Heme oxygenases: cellular multifunctional and protective molecules against UV-induced oxidative stress. Oxid. Med. Cell. Longev. 2019, 5416728.
  5. da Silva, I. V., Santos, A. C., Matos, A., da Silva, A. P., Soveral, G., Rebelo, I. and Bicho, M. (2021) Association of Aquaporin-3, Aquaporin-7, NOS3 and CYBA polymorphisms with hypertensive disorders in women. Pregnancy Hypertens. 24, 44-49. https://doi.org/10.1016/j.preghy.2021.02.008
  6. Delmas, V. and Larue, L. (2019) Molecular and cellular basis of depigmentation in vitiligo patients. Exp. Dermatol. 28, 662-666. https://doi.org/10.1111/exd.13858
  7. Denat, L., Kadekaro, A. L., Marrot, L., Leachman, S. A. and AbdelMalek, Z. A. (2014) Melanocytes as instigators and victims of oxidative stress. J. Invest. Dermatol. 134, 1512-1518. https://doi.org/10.1038/jid.2014.65
  8. Jian, Z., Li, K., Song, P., Zhu, G., Zhu, L., Cui, T., Liu, B., Tang, L., Wang, X. and Wang, G. (2014) Impaired activation of the Nrf2-ARE signaling pathway undermines H2O2-induced oxidative stress response: a possible mechanism for melanocyte degeneration in vitiligo. J. Invest. Dermatol. 134, 2221-2230. https://doi.org/10.1038/jid.2014.152
  9. Kim, H., Park, C. S. and Lee, A. Y. (2017) Reduced Nrf2 activation in PI3K phosphorylation-impaired vitiliginous keratinocytes increases susceptibility to ROS-generating chemical-induced apoptosis. Environ. Toxicol. 32, 2481-2491. https://doi.org/10.1002/tox.22461
  10. Kim, N.-H. and Lee, A.-Y. (2010) Reduced aquaporin3 expression and survival of keratinocytes in the depigmented epidermis of vitiligo. J. Invest. Dermatol. 130, 2231-2239. https://doi.org/10.1038/jid.2010.99
  11. Laddha, N. C., Dwivedi, M., Mansuri, M. S., Gani, A. R., Ansarullah, M., Ramachandran, A., Dalai, S. and Begum, R. (2013) Vitiligo: interplay between oxidative stress and immune system. Exp. Dermatol. 22, 245-250. https://doi.org/10.1111/exd.12103
  12. Lee, A.-Y. (2012) Role of keratinocytes in the development of vitiligo. Ann. Dermatol. 24, 115-125. https://doi.org/10.5021/ad.2012.24.2.115
  13. Lee, A.-Y., Kim, N.-H., Choi, W.-I. and Youm, Y.-H. (2005) Less keratinocyte-derived factors related to more keratinocyte apoptosis in depigmented than normally pigmented suction-blistered epidermis may cause passive melanocyte death in vitiligo. J. Invest. Dermatol. 124, 976-983. https://doi.org/10.1111/j.0022-202X.2005.23667.x
  14. Lee, S. E., Kwon, K., Oh, S. W., Park, S. J., Yu, E., Kim, H., Yang, S., Park, J. Y., Chung, W.-J., Cho, J. Y. and Lee, J. (2021) Mechanisms of resorcinol antagonism of benzo[a]pyrene-induced damage to human keratinocytes. Biomol. Ther. (Seoul) 29, 227-233. https://doi.org/10.4062/biomolther.2020.083
  15. Lin, X., Meng, X., Song, Z. and Lin, J. (2020) Nuclear factor erythroid 2-related factor 2 (Nrf2) as a potential therapeutic target for vitiligo. Arch. Biochem. Biophys. 696, 108670.
  16. Maresca, V., Roccella, M., Roccella, F., Camera, E., Del Porto, G., Passi, S., Grammatico, P. and Picardo, M. (1997) Increased sensitivity to peroxidative agents as a possible pathogenic factor of melanocyte damage in vitiligo. J. Invest. Dermatol. 109, 310-313. https://doi.org/10.1111/1523-1747.ep12335801
  17. Marrot, L., Jones, C., Perez, P. and Meunier, J. R. (2008) The significance of Nrf2 pathway in (photo)-oxidative stress response in melanocytes and keratinocytes of the human epidermis. Pigment Cell Melanoma Res. 21, 79-88. https://doi.org/10.1111/j.1755-148X.2007.00424.x
  18. Milkovic, L. and Cipak Gasparovic, A. (2021) AQP3 and AQP5-potential regulators of redox status in breast cancer. Molecules 26, 2613.
  19. Miller, E. W., Dickinson, B. C. and Chang, C. J. (2010) Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc. Natl. Acad. Sci. U. S. A. 107, 15681-15686. https://doi.org/10.1073/pnas.1005776107
  20. Motohashi, H. and Yamamoto, M. (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol. Med. 10, 549-557. https://doi.org/10.1016/j.molmed.2004.09.003
  21. Pang, Y., Wu, S., He, Y., Nian, Q., Lei, J., Yao, Y., Guo, J. and Zeng, J. (2021) Plant-derived compounds as promising therapeutics for vitiligo. Front. Pharmacol. 12, 685116.
  22. Rodrigues, M., Ezzedine, K., Hamzavi, I., Pandya, A. G., Harris, J. E. and Group, V. W. (2017) New discoveries in the pathogenesis and classification of vitiligo. J. Am. Acad. Dermatol. 77, 1-13. https://doi.org/10.1016/j.jaad.2016.10.048
  23. Romano-Lozano, V., Cruz-Avelar, A. and Peralta-Pedrero, M. (2022) Nuclear factor erythroid 2-related factor 2 in vitiligo. Actas Dermosifiliogr. 113, 705-711. https://doi.org/10.1016/j.ad.2022.02.025
  24. Saha, S., Buttari, B., Panieri, E., Profumo, E. and Saso, L. (2020) An overview of Nrf2 signaling pathway and its role in inflammation. Molecules 25, 5474.
  25. Schallreuter, K. U., Wood, J. M. and Berger, J. (1991) Low catalase levels in the epidermis of patients with vitiligo. J. Invest. Dermatol. 97, 1081-1085. https://doi.org/10.1111/1523-1747.ep12492612
  26. Seneschal, J., Boniface, K., D'Arino, A. and Picardo, M. (2021) An update on Vitiligo pathogenesis. Pigment Cell Melanoma Res. 34, 236-243. https://doi.org/10.1111/pcmr.12949
  27. Wang, Y., Chen, D., Liu, Y., Zhang, Y., Duan, C., Otkur, W., Chen, H., Liu, X., Xia, T. and Qi, H. (2021) AQP3-mediated H2O2 uptake inhibits LUAD autophagy by inactivating PTEN. Cancer Sci. 112, 3278-3292. https://doi.org/10.1111/cas.15008
  28. Wang, Y., Li, S. and Li, C. (2019) Perspectives of new advances in the pathogenesis of vitiligo: from oxidative stress to autoimmunity. Med. Sci. Monit. 25, 1017-1023. https://doi.org/10.12659/MSM.914898
  29. White, M. K., Kaminski, R., Young, W. B., Roehm, P. C. and Khalili, K. (2017) CRISPR editing technology in biological and biomedical investigation. J. Cell. Biochem. 118, 3586-3594. https://doi.org/10.1002/jcb.26099
  30. Xie, H., Zhou, F., Liu, L., Zhu, G., Li, Q., Li, C. and Gao, T. (2016) Vitiligo: how do oxidative stress-induced autoantigens trigger autoimmunity? J. Dermatol. Sci. 81, 3-9. https://doi.org/10.1016/j.jdermsci.2015.09.003
  31. Xuan, Y., Yang, Y., Xiang, L. and Zhang, C. (2022) The role of oxidative stress in the pathogenesis of vitiligo: a culprit for melanocyte death. Oxid. Med. Cell. Longev. 2022, 8498472.
  32. Zhang, X., Rosenstein, B. S., Wang, Y., Lebwohl, M. and Wei, H. (1997) Identification of possible reactive oxygen species involved in ultraviolet radiation-induced oxidative DNA damage. Free Radic. Biol. Med. 23, 980-985. https://doi.org/10.1016/S0891-5849(97)00126-3