DOI QR코드

DOI QR Code

A Novel Role of Hyaluronic Acid and Proteoglycan Link Protein 1 (HAPLN1) in Delaying Vascular Endothelial Cell Senescence

  • Dan Zhou (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Ji Min Jang (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Goowon Yang (HaplnScience Research Institute, HaplnScience Inc.) ;
  • Hae Chan Ha (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Zhicheng Fu (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Dae Kyong Kim (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University)
  • Received : 2023.05.13
  • Accepted : 2023.06.23
  • Published : 2023.11.01

Abstract

Cardiovascular diseases (CVDs) are the most common cardiovascular system disorders. Cellular senescence is a key mechanism associated with dysfunction of aged vascular endothelium. Hyaluronic acid and proteoglycan link protein 1 (HAPLN1) has been known to non-covalently link hyaluronic acid (HA) and proteoglycans (PGs), and forms and stabilizes HAPLN1-containing aggregates as a major component of extracellular matrix. Our previous study showed that serum levels of HAPLN1 decrease with aging. Here, we found that the HAPLN1 gene expression was reduced in senescent human umbilical vein endothelial cells (HUVECs). Moreover, a recombinant human HAPLN1 (rhHAPLN1) decreased the activity of senescence-associated β-gal and inhibited the production of senescence-associated secretory phenotypes, including IL-1β, CCL2, and IL-6. rhHAPLN1 also downregulated IL-17A levels, which is known to play a key role in vascular endothelial senescence. In addition, rhHAPLN1 protected senescent HUVECs from oxidative stress by reducing cellular reactive oxygen species levels, thus promoting the function and survival of HUVECs and leading to cellular proliferation, migration, and angiogenesis. We also found that rhHAPLN1 not only increases the sirtuin 1 (SIRT1) levels, but also reduces the cellular senescence markers levels, such as p53, p21, and p16. Taken together, our data indicate that rhHAPLN1 delays or inhibits the endothelial senescence induced by various aging factors, such as replicative, IL-17A, and oxidative stress-induced senescence, thus suggesting that rhHAPLN1 may be a promising therapeutic for CVD and atherosclerosis.

Keywords

Acknowledgement

This research was supported by a Chung-Ang University Young Scientist Scholarship in 2017, and a grant from the National Research Foundation of Korea (NRF-2017M3A9D8048414) funded by the Korean government (Ministry of Science and ICT).

References

  1. Arnaoutova, I. and Kleinman, H. K. (2010) In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat. Protoc. 5, 628-635. https://doi.org/10.1038/nprot.2010.6
  2. Bourguignon, L. Y. W., Xia, W. and Wong, G. (2009) Hyaluronan-mediated CD44 interaction with p300 and SIRT1 regulates beta-catenin signaling and NFkappaB-specific transcription activity leading to MDR1 and Bcl-xL gene expression and chemoresistance in breast tumor cells. J. Biol. Chem. 284, 2657-2671. https://doi.org/10.1074/jbc.M806708200
  3. Buckwalter, J. A., Rosenberg, L. C. and Tang, L. H. (1984) The effect of link protein on proteoglycan aggregate structure. An electron microscopic study of the molecular architecture and dimensions of proteoglycan aggregates reassembled from the proteoglycan monomers and link proteins of bovine fetal epiphyseal cartilage. J. Biol. Chem. 259, 5361-5363. https://doi.org/10.1016/S0021-9258(18)91012-4
  4. Campisi, J. (2013) Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685-705. https://doi.org/10.1146/annurev-physiol-030212-183653
  5. Chen, H., Liu, X., Zhu, W., Chen, H., Hu, X., Jiang, Z., Xu, Y., Wang, L., Zhou, Y., Chen, P., Zhang, N., Hu, D., Zhang, L., Wang, Y., Xu, Q., Wu, R., Yu, H. and Wang, J. (2014) SIRT1 ameliorates age-related senescence of mesenchymal stem cells via modulating telomere shelterin. Front. Aging Neurosci. 6, 103.
  6. Chen, Y., Liu, H., Wang, X., Zhang, H., Liu, E. and Su, X. (2017) Homocysteine up-regulates endothelin type A receptor in vascular smooth muscle cells through Sirt1/ERK1/2 signaling pathway. Microvasc. Res. 114, 34-40. https://doi.org/10.1016/j.mvr.2017.05.010
  7. Coppe, J. P., Desprez, P. Y., Krtolica, A. and Campisi, J. (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99-118. https://doi.org/10.1146/annurev-pathol-121808-102144
  8. Davalli, P., Mitic, T., Caporali, A., Lauriola, A. and D'Arca, D. (2016) ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid. Med. Cell. Longev. 2016, 3565127.
  9. Donato, A. J., Magerko, K. A., Lawson, B. R., Durrant, J. R., Lesniewski, L. A. and Seals, D. R. (2011) SIRT-1 and vascular endothelial dysfunction with ageing in mice and humans. J. Physiol. 589, 4545-4554. https://doi.org/10.1113/jphysiol.2011.211219
  10. Ecker, B. L., Kaur, A., Douglass, S. M., Webster, M. R., Almeida, F. V., Marino, G. E., Sinnamon, A. J., Neuwirth, M. G., Alicea, G. M., Ndoye, A., Fane, M., Xu, X., Sim, M. S., Deutsch, G. B., Faries, M. B., Karakousis, G. C. and Weeraratna, A. T. (2019) Age-related changes in HAPLN1 increase lymphatic permeability and affect routes of melanoma metastasis. Cancer Discov. 9, 82-95. https://doi.org/10.1158/2159-8290.CD-18-0168
  11. Forstermann, U. and Sessa, W. C. (2012) Nitric oxide synthases: regulation and function. Eur. Heart J. 33, 829-837, 837a-837d. https://doi.org/10.1093/eurheartj/ehr304
  12. Fujino, T., Yokokawa,R., Oshima, T. and Hayakawa, M. (2018) SIRT1 knockdown up-regulates p53 and p21/Cip1 expression in renal adenocarcinoma cells but not in normal renal-derived cells in a deacetylase-independent manner. J. Toxicol. Sci. 43, 711-715. https://doi.org/10.2131/jts.43.711
  13. Gire, V. and Dulic, V. (2015) Senescence from G2 arrest, revisited. Cell Cycle 14, 297-304. https://doi.org/10.1080/15384101.2014.1000134
  14. Govindan, J. and Iovine, M. K. (2014) Hapln1a is required for connexin43-dependent growth and patterning in the regenerating fin skeleton. PLoS One 9, e88574.
  15. Han, Y. and Kim, S. Y. (2023) Endothelial senescence in vascular diseases: Current understanding and future opportunities in senotherapeutics. Exp. Mol. Med. 55, 1-12. https://doi.org/10.1038/s12276-022-00906-w
  16. Hardingham, T. E. (1979) The role of link-protein in the structure of cartilage proteoglycan aggregates. Biochem. J. 177, 237-247. https://doi.org/10.1042/bj1770237
  17. Honda, S., Ikeda, K., Urata, R., Yamazaki, E., Emoto, N. and Matoba, S. (2021) Cellular senescence promotes endothelial activation through epigenetic alteration, and consequently accelerates atherosclerosis. Sci. Rep. 11, 14608.
  18. Huang, J., Gan, Q., Han, L., Li, J., Zhang, H., Sun, Y., Zhang, Z. and Tong, T. (2008) SIRT1 overexpression antagonizes cellular senescence with activated ERK/S6k1 signaling in human diploid fibroblasts. PLoS One 3, e1710.
  19. Jia, G., Aroor, A. R., Jia, C. and Sowers, J. R. (2019) Endothelial cell senescence in aging-related vascular dysfunction. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 1802-1809. https://doi.org/10.1016/j.bbadis.2018.08.008
  20. Kaur, A., Ecker, B. L., Douglass, S. M., Kugel, C. H., 3rd, Webster, M. R., Almeida, F. V., Somasundaram, R., Hayden, J., Ban, E., Ahmadzadeh, H., Franco-Barraza, J., Shah, N., Mellis, l. A., Keeney, F., Kossenkov, A., Tang, H. Y., Yin, X., Liu, Q., Xu, X., Fane, M., Brafford, P., Herlyn, M., Speicher, D. W., Wargo, J. A., Tetzlaff, M. T., Haydu, L. E., Raj, A., Shenoy, V., Cukierman, E. and Weeraratna, A. T. (2019) Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discov. 9, 64-81.
  21. Kaur, J. and Farr, J. N. (2020) Cellular senescence in age-related disorders. Transl. Res. 226, 96-104.  https://doi.org/10.1016/j.trsl.2020.06.007
  22. Knudson, C. B. and Knudson, W. (1993) Hyaluronan-binding proteins in development, tissue homeostasis, and disease. FASEB J. 7, 1233-1241. https://doi.org/10.1096/fasebj.7.13.7691670
  23. Li, W., Du, D., Wang, H., Liu, Y., Lai, X., Jiang, F., Chen, D., Zhang, Y., Zong, J. and Li, Y. (2015) Silent information regulator 1 (SIRT1) promotes the migration and proliferation of endothelial progenitor cells through the PI3K/Akt/eNOS signaling pathway. Int. J. Clin. Exp. Pathol. 8, 2274-2287.
  24. Luo, W., Wang, Y., Yang, H., Dai, C., Hong, H., Li, J., Liu, Z., Guo, Z., Chen, X., He, P., Li, Z., Li, F., Jiang, J., Liu, P. and Li, Z. (2018) Heme oxygenase-1 ameliorates oxidative stress-induced endothelial senescence via regulating endothelial nitric oxide synthase activation and coupling. Aging 10, 1722-1744. https://doi.org/10.18632/aging.101506
  25. Milanovic, M., Fan, D. N. Y., Belenki, D., Dabritz, J. H. M., Zhao, Z., Yu, Y., Dorr, J. R., Dimitrova, L., Lenze, D., Monteiro Barbosa, I. A., Mendoza-Parra, M. A., Kanashova, T., Metzner, M., Pardon, K., Reimann, M., Trumpp, A., Dorken, B., Zuber, J., Gronemeyer, H., Hummel, M., Dittmar, G., Lee, S. A. and Schmitt, C. (2018) Senescence-associated reprogramming promotes cancer stemness. Nature 553, 96-100. https://doi.org/10.1038/nature25167
  26. Mockl, L. (2020) The emerging role of the mammalian glycocalyx in functional membrane organization and immune system regulation. Front. Cell Dev. Biol. 8, 253.
  27. Nikolajevic, J., Ariaee, N., Liew, A., Abbasnia, S., Fazeli, B. and Sabovic, M. (2022) The role of microRNAs in endothelial cell senescence. Cells 11, 1185.
  28. Panza, J. A., Quyyumi, A. A., Brush, J. E., Jr., and Epstein, S. E. (1990) Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N. Engl. J. Med. 323, 22-27. https://doi.org/10.1056/NEJM199007053230105
  29. Poulose, N. and Raju, R. (2014) Aging and injury: alterations in cellular energetics and organ function. Aging Dis. 5, 101-108. https://doi.org/10.14336/ad.2014.0500101
  30. Potente, M., Ghaeni, L., Baldessari, D., Mostoslavsky, R., Rossig, L., Dequiedt, F., Haendeler, J., Mione, M., Dejana, E., Alt, F. W., Zeiher, A. M. and Dimmeler, S. (2007) SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev. 21, 2644-2658. https://doi.org/10.1101/gad.435107
  31. Riahi, R., Yang, Y., Zhang, D. D. and Wong, P. K. (2012) Advances in wound-healing assays for probing collective cell migration. J. Lab. Autom. 17, 59-65. https://doi.org/10.1177/2211068211426550
  32. Roughley, P. J., Poole, A. R. and Mort, J. S. (1982) The heterogeneity of link proteins isolated from human articular cartilage proteoglycan aggregates. J. Biol. Chem. 257, 11908-11914. https://doi.org/10.1016/S0021-9258(18)33652-4
  33. Scudellari, M. (2015) Ageing research: blood to blood. Nature 517, 426-429. https://doi.org/10.1038/517426a
  34. Smith, C. A., Humphreys, P. A., Bates, N., Naven, M. A., Cain, S. A., Dvir-Ginzberg, M. and Kimber, S. J. (2022) SIRT1 activity orchestrates ECM expression during hESC-chondrogenic differentiation. FASEB J. 36, e22314.
  35. Sun, H. J., Wu, Z. Y., Nie, X. W. and Bian, J. S. (2019) Role of endothelial dysfunction in cardiovascular diseases: the link between inflammation and hydrogen sulfide. Front. Pharmacol. 10, 1568.
  36. van Deursen, J. M. (2014) The role of senescent cells in ageing. Nature 509, 439-446. https://doi.org/10.1038/nature13193
  37. Vassallo, P. F., Simoncini, S., Ligi, I., Chateau, A. L., Bachelier, R., Robert, S., Morere, J., Fernandez, S., Guillet, B., Marcelli, M., Tellier, E., Pascal, A., Simeoni, U., Anfosso, F., Magdinier, F., DignatGeorge, F. and Sabatier, F. (2014) Accelerated senescence of cord blood endothelial progenitor cells in premature neonates is driven by SIRT1 decreased expression. Blood 123, 2116-2126. https://doi.org/10.1182/blood-2013-02-484956
  38. Wallis, R., Milligan, D., Hughes, B., Mizen, H., Lopez-Dominguez, J. A., Eduputa, U., Tyler, E. J., Serrano, M. and Bishop, C. L. (2022) Senescence-associated morphological profiles (SAMPs): an image-based phenotypic profiling method for evaluating the inter and intra model heterogeneity of senescence. Aging 14, 4220-4246. https://doi.org/10.18632/aging.204072
  39. Wang, A. S. and Dreesen, O. (2018) Biomarkers of cellular senescence and skin aging. Front. Genet. 9, 247.
  40. Wang, J. C. and Bennett, M. (2012) Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ. Res. 111, 245-259. https://doi.org/10.1161/CIRCRESAHA.111.261388
  41. Wang, Y., Xu, X., Marshall, J. E., Gong, M., Zhao, Y., Dua, K., Hansbro, P. M., Xu, J. and Liu, G. (2021) Loss of hyaluronan and proteoglycan link protein-1 induces tumorigenesis in colorectal cancer. Front. Oncol. 11, 754240.
  42. Warren, J. P., Miles, D. E., Kapur, N., Wilcox, R. K. and Beales, P. A. (2021) Hydrodynamic mixing tunes the stiffness of proteoglycan-mimicking physical hydrogels. Adv. Healthc. Mater. 10, e2001998.
  43. Xiang, Q. Y., Tian, F., Du, X., Xu, J., Zhu, L. Y., Guo, L. L., Wen, T., Liu, Y. S. and Liu, L. (2020) Postprandial triglyceride-rich lipoproteins-induced premature senescence of adipose-derived mesenchymal stem cells via the SIRT1/p53/Ac-p53/p21 axis through oxidative mechanism. Aging 12, 26080-26094. https://doi.org/10.18632/aging.202298
  44. Zhang, L., Liu, M., Liu, W., Hu, C., Li, H., Deng, J., Cao, Q., Wang, Y., Hu, W. and Li, Q. (2021) Th17/IL-17 induces endothelial cell senescence via activation of NF-κ/p53/Rb signaling pathway. Lab. Invest. 101, 1418-1426. https://doi.org/10.1038/s41374-021-00629-y
  45. Zhang, W., Huang, Q., Zeng, Z., Wu, J., Zhang, Y. and Chen, Z. (2017) Sirt1 inhibits oxidative stress in vascular endothelial cells. Oxid. Med. Cell. Longev. 2017, 7543973.