DOI QR코드

DOI QR Code

Synergistic Renoprotective Effect of Melatonin and Zileuton by Inhibition of Ferroptosis via the AKT/mTOR/NRF2 Signaling in Kidney Injury and Fibrosis

  • Kyung Hee Jung (Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University) ;
  • Sang Eun Kim (Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University) ;
  • Han Gyeol Go (Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University) ;
  • Yun Ji Lee (Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University) ;
  • Min Seok Park (Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University) ;
  • Soyeon Ko (Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University) ;
  • Beom Seok Han (Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University) ;
  • Young-Chan Yoon (Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University) ;
  • Ye Jin Cho (Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University) ;
  • Pureunchowon Lee (Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University) ;
  • Sang-Ho Lee (Division of Nephrology, Department of Internal Medicine, College of Medicine, Kyung Hee University) ;
  • Kipyo Kim (Divison of Nephrology and Hypertension, Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine) ;
  • Soon-Sun Hong (Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University)
  • Received : 2023.03.23
  • Accepted : 2023.04.17
  • Published : 2023.11.01

Abstract

According to recent evidence, ferroptosis is a major cell death mechanism in the pathogenesis of kidney injury and fibrosis. Despite the renoprotective effects of classical ferroptosis inhibitors, therapeutic approaches targeting kidney ferroptosis remain limited. In this study, we assessed the renoprotective effects of melatonin and zileuton as a novel therapeutic strategy against ferroptosis-mediated kidney injury and fibrosis. First, we identified RSL3-induced ferroptosis in renal tubular epithelial HK-2 and HKC-8 cells. Lipid peroxidation and cell death induced by RSL3 were synergistically mitigated by the combination of melatonin and zileuton. Combination treatment significantly downregulated the expression of ferroptosis-associated proteins, 4-HNE and HO-1, and upregulated the expression of GPX4. The expression levels of p-AKT and p-mTOR also increased, in addition to that of NRF2 in renal tubular epithelial cells. When melatonin (20 mg/kg) and zileuton (20 mg/kg) were administered to a unilateral ureteral obstruction (UUO) mouse model, the combination significantly reduced tubular injury and fibrosis by decreasing the expression of profibrotic markers, such as α-SMA and fibronectin. More importantly, the combination ameliorated the increase in 4-HNE levels and decreased GPX4 expression in UUO mice. Overall, the combination of melatonin and zileuton was found to effectively ameliorate ferroptosis-related kidney injury by upregulating the AKT/mTOR/ NRF2 signaling pathway, suggesting a promising therapeutic strategy for protection against ferroptosis-mediated kidney injury and fibrosis.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean Government Ministry of Science and Information and Communication Technologies (NRF-2021R1A5A2031612, 2021R1A2B5B03086410, 2022R1G1A1011829, 2022R1A2C1092933) and Inha University Research Grant.

References

  1. Ahmadi, Z. and Ashrafizadeh, M. (2020) Melatonin as a potential modulator of Nrf2. Fundam. Clin. Pharmacol. 34, 11-19. https://doi.org/10.1111/fcp.12498
  2. Baba, Y., Higa, J. K., Shimada, B. K., Horiuchi, K. M., Suhara, T., Kobayashi, M., Woo, J. D., Aoyagi, H., Marh, K. S., Kitaoka, H. and Matsui, T. (2018) Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 314, H659-H668. https://doi.org/10.1152/ajpheart.00452.2017
  3. Berger, W., Chandt, M. T. M. and Cairns, C. B. (2007) Zileuton: clinical implications of 5-Lipoxygenase inhibition in severe airway disease. Int. J. Clin. Pract. 61, 663-676. https://doi.org/10.1111/j.1742-1241.2007.01320.x
  4. Czapski, G. A., Czubowicz, K. and Strosznajder, R. P. (2012) Evaluation of the antioxidative properties of lipoxygenase inhibitors. Pharmacol. Rep. 64, 1179-1188. https://doi.org/10.1016/S1734-1140(12)70914-3
  5. Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., Patel, D. N., Bauer, A. J., Cantley, A. M., Yang, W. S., Morrison, B., 3rd and Stockwell, B. R. (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060-1072. https://doi.org/10.1016/j.cell.2012.03.042
  6. Feng, Q., Yu, X., Qiao, Y., Pan, S., Wang, R., Zheng, B., Wang, H., Ren, K.-D., Liu, H. and Yang, Y. (2022) Ferroptosis and Acute Kidney Injury (AKI): molecular mechanisms and therapeutic potentials. Front. Pharmacol. 13, 858676.
  7. Ferlazzo, N., Andolina, G., Cannata, A., Costanzo, M. G., Rizzo, V., Curro, M., Ientile, R. and Caccamo, D. (2020) Is melatonin the cornucopia of the 21st century? Antioxidants 9, 1088.
  8. Friedmann Angeli, J. P., Schneider, M., Proneth, B., Tyurina, Y. Y., Tyurina, V. A., Hammond, V. J., Herbach, N., Aichler, M., Walch, A., Eggenhofer, E., Basavarajappa, D., Radmark, O., Kobayashi, S., Seibt, T., Beck, H., Neff, F., Esposito, I., Wanke, R., Forster, H., Yefremova, O., Heinrichmeyer, M., Bornkamm, G. W., Geissler, E. K., Thomas, S. B., Stockwell, B. R., O'Donnell, V. B., Kagan, V. E., Schick, J. A. and Conrad, M. (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180-1191. https://doi.org/10.1038/ncb3064
  9. Guohua, F., Tieyuan, Z., Xinping, M. and Juan, X. (2021) Melatonin protects against PM2.5-induced lung injury by inhibiting ferroptosis of lung epithelial cells in a Nrf2-dependent manner. Ecotoxicol. Environ. Saf. 223, 112588.
  10. He, F., Antonucci, L., Yamachika, S., Zhang, Z., Taniguchi, K., Umemura, A., Hatzivassiliou, G., Roose-Girma, M., Reina-Campos, M., Duran, A., Diaz-Meco, M. T., Moscat, J., Sun, B. and Karin, M. (2020) NRF2 activates growth factor genes and downstream AKT signaling to induce mouse and human hepatomegaly. J. Hepatol. 72, 1182-1195. https://doi.org/10.1016/j.jhep.2020.01.023
  11. Ide, S., Kobayashi, Y., Ide, K., Strausser, S. A., Abe, K., Herbek, S., O'Brien, L. L., Crowley, S. D., Barisoni, L., Tata, A., Tata, P. R. and Souma, T. (2021) Ferroptotic stress promotes the accumulation of pro-inflammatory proximal tubular cells in maladaptive renal repair. Elife 10, e68603.
  12. Israel, E., Dermarkarian, R., Rosenberg, M., Sperling, R., Taylor, G., Rubin, P. and Drazen, J. M. (1990) The effects of a 5-lipoxygenase inhibitor on asthma induced by cold, dry air. N. Engl. J. Med. 323, 1740-1744. https://doi.org/10.1056/NEJM199012203232505
  13. Kellum, J. A., Romagnani, P., Ashuntantang, G., Ronco, C., Zarbock, A. and Anders, H. J. (2021) Acute kidney injury. Nat. Rev. Dis. Primers 7, 52.
  14. Kim, S., Kang, S-W., Joo, J., Han, S. H., Shin, H., Nam, B. Y., Park, J., Yoo, T.-H., Kim, G., Lee, P. and Park, J. T. (2021) Characterization of ferroptosis in kidney tubular cell death under diabetic conditions. Cell Death Dis. 12, 160.
  15. Kovesdy, C. P. (2022) Epidemiology of chronic kidney disease: an update 2022. Kidney Int. Suppl. (2011) 12, 7-11. https://doi.org/10.1016/j.kisu.2021.11.003
  16. Kurcer, Z., Oguz, E., Ozbilge, H., Baba, F., Aksoy, N., Celik, H., Cakir, H. and Gezen, M. R. (2007) Melatonin protects from ischemia/reperfusion-induced renal injury in rats: this effect is not mediated by proinflammatory cytokines. J. Pineal Res. 43, 172-178. https://doi.org/10.1111/j.1600-079X.2007.00459.x
  17. Lee, J. J., Chang-Chien, G. P., Lin, S., Hsiao, Y. T., Ke, M. C., Chen, A. and Lin, T. K. (2022) 5-Lipoxygenase inhibition protects retinal pigment epithelium from sodium iodate-induced ferroptosis and prevents retinal degeneration. Oxid. Med. Cell. Longev. 2022, 1792894.
  18. Lei, G., Zhuang, L. and Gan, B. (2021) mTORC1 and ferroptosis: regulatory mechanisms and therapeutic potential. BioEssays 43, e2100093.
  19. Li, D., Pan, J. H., Huang, X. F., Liao, Y. Q., Ling, Y. J. and Luo, J. Y. (2023) Effect of melatonin on oxidative stress indicators in animal models of fibrosis: a systematic review and meta-analysis. Free Radic. Biol. Med. 195, 158-177.
  20. Li, J., Cao, F., Yin, H. L., Huang, Z. J., Lin, Z. T., Mao, N., Sun, B. and Wang, G. (2020) Ferroptosis: past, present and future. Cell Death Dis. 11, 88.
  21. Li, M., Yang, N., Hao, L., Zhou, W., Li, L., Liu, L., Yang, F., Xu, L., Yao, G., Zhu, C., Xu, W. and Fang, S. (2022) Melatonin inhibits the ferroptosis pathway in rat bone marrow mesenchymal stem cells by activating the PI3K/AKT/mTOR signaling axis to attenuate steroid-induced osteoporosis. Oxid. Med. Cell. Longev. 18, 8223737.
  22. Lin, H. C., Lin, T. H., Wu, M. Y., Chiu, Y. C., Tang, C. H., Hour, M. J., Liou, H. C., Tu, H. J., Yang, R. S. and Fu, W. M. (2014) 5-Lipoxygenase inhibitors attenuate TNF-α-induced inflammation in human synovial fibroblasts. PLoS One 9, e107890.
  23. Linkermann, A., Skouta, R., Himmerkus, N., Mulay, S. R., Dewitz, C., Zen, F. D., Prokai, A., Zuchtriegel, G., Krombach, F., Welz, P.-S., Weinlich, R., Berghe, T. V., Vandenabeele, P., Pasparakis, M., Bleich, M., Weinberg, J. M., Reichel, C. A., Brasen, J. H., Kunzendorf, U., Anders, H.-J., Stockwell, B. R., Green, D. R. and Krautwald, S. (2014) Synchronized renal tubular cell death involves ferroptosis. Proc. Natl. Acad. Sci. U. S. A. 111, 16836-16841. https://doi.org/10.1073/pnas.1415518111
  24. Liu, C., He, P., Guo, Y., Tian, Q., Wang, J., Wang, G., Zhang, Z. and Li, M. (2022a) Taurine attenuates neuronal ferroptosis by regulating GABAB/AKT/GSK3β/β-catenin pathway after subarachnoid hemorrhage. Free Radic. Biol. Med. 193, 795-807. https://doi.org/10.1016/j.freeradbiomed.2022.11.003
  25. Liu, H., Zhao, L., Wang, M., Yang, K., Jin, Z., Zhao, C. and Shi, G. (2022b) FNDC5 causes resistance to sorafenib by activating the PI3K/Akt/Nrf2 pathway in hepatocellular carcinoma cells. Front. Oncol. 12, 852095.
  26. Liu, Y., Wang, W., Li, Y., Xiao, Y., Cheng, J. and Jia, J. (2015) The 5-lipoxygenase inhibitor zileuton confers neuroprotection against glutamate oxidative damage by inhibiting ferroptosis. Biol. Pharm. Bull. 38, 1234-1239. https://doi.org/10.1248/bpb.b15-00048
  27. Liu, Y., Wang, Y., Liu, J., Kang, R. and Tang, D. (2021) Interplay between MTOR and GPX4 signaling modulates autophagy-dependent ferroptotic cancer cell death. Cancer Gene Ther. 28, 55-63. https://doi.org/10.1038/s41417-020-0182-y
  28. Luyckx, V. A., Tonelli, M. and Stanifer, J. W. (2018) The global burden of kidney disease and the sustainable development goals. Bull. World Health Organ. 96, 414-422D.
  29. Ma, H., Wang, X., Zhang, W., Li, H., Zhao, W., Sun, J. and Yang, M. (2020) Melatonin suppresses ferroptosis induced by high glucose via activation of the Nrf2/HO-1 signaling pathway in type 2 diabetic osteoporosis. Oxid. Med. Cell. Longev. 2020, 9067610.
  30. Mahmood, D. (2019) Pleiotropic effects of melatonin. Drug Res. (Stuttg.) 69, 65-74. https://doi.org/10.1055/a-0656-6643
  31. Manning, B. D. and Toker, A. (2017) AKT/PKB signaling: navigating the network. Cell 169, 381-405. https://doi.org/10.1016/j.cell.2017.04.001
  32. Maremonti, F., Meyer, C. and Linkermann, A. (2022) Mechanisms and models of kidney tubular necrosis and nephron loss. J. Am. Soc. Nephrol. 33, 472-486. https://doi.org/10.1681/ASN.2021101293
  33. Martin-Sanchez, D., Ruiz-Andres, O., Poveda, J., Carrasco, S., Cannata-Ortiz, P., Sanchez-Nino, M. D., Ortega, M. R., Egido, J., Linkermann, A., Ortiz, A. and Sanz, A. B. (2017) Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI. J. Am. Soc. Nephrol. 28, 218-229 https://doi.org/10.1681/ASN.2015121376
  34. Martinez-Klimova, E., Aparicio-Trejo, O. E., Tapia, E. and Pedraza-Chaverri, J. (2019) Unilateral ureteral obstruction as a model to investigate fibrosis-attenuating treatments. Biomolecules 9, 141.
  35. Mashima, R. and Okuyama, T. (2015) The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox. Biol. 6, 297-310. https://doi.org/10.1016/j.redox.2015.08.006
  36. Matsushita, K., Ballew, S. H., Wang, A. Y. M., Kalyesubula, R., Schaeffner, E. and Agarwal, R. (2022) Epidemiology and risk of cardiovascular disease in populations with chronic kidney disease. Nat. Rev. Nephrol. 18, 696-707 https://doi.org/10.1038/s41581-022-00616-6
  37. Montford, J. R., Bauer, C., Dobrinskikh, E., Hopp, K., Levi, M., Weiser-Evans, M., Nemenoff, R. and Furgeson, S. B. (2019) Inhibition of 5-lipoxygenase decreases renal fibrosis and progression of chronic kidney disease. Am. J. Physiol. Renal Physiol. 316, F732-F742. https://doi.org/10.1152/ajprenal.00262.2018
  38. Montilla, P., Cruz, A., Padillo, F. J., Tunez, I., Gascon, F., Munoz, M. C., Gomez, M. and Pera, C. (2001) Melatonin versus vitamin E as protective treatment against oxidative stress after extra-hepatic bile duct ligation in rats. J. Pineal Res. 31, 138-144. https://doi.org/10.1034/j.1600-079x.2001.310207.x
  39. Mulay, S. R., Linkermann, A. and Anders, H. J. (2016) Necroinflammation in kidney disease. J. Am. Soc. Nephrol. 27, 27-39. https://doi.org/10.1681/ASN.2015040405
  40. NaveenKumar, S. K., Hemshekhar, M., Kemparaju, K. and Girish, K. S. (2019) Hemin-induced platelet activation and ferroptosis is mediated through ROS-driven proteasomal activity and inflammasome activation: protection by melatonin. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 2303-2316. https://doi.org/10.1016/j.bbadis.2019.05.009
  41. Ou, Y., Wang, S. J., Li, D., Chu, B. and Gu, W. (2016) Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc. Natl. Acad. Sci. U. S. A. 113, E6806-E6812. https://doi.org/10.1073/pnas.1607152113
  42. Priante, G., Gianesello, L., Ceol, M., Del Prete, D. and Anglani, F. (2019) Cell death in the kidney. Int. J. Mol. Sci. 20, 3598.
  43. Quiroz, Y., Ferrebuz, A., Romero, F., Vaziri, N. D. and RodriguezIturbe, B. (2008) Melatonin ameliorates oxidative stress, inflammation, proteinuria, and progression of renal damage in rats with renal mass reduction. Am. J. Physiol. Renal Physiol. 294, F336-F344. https://doi.org/10.1152/ajprenal.00500.2007
  44. Shah, R., Shchepinov, M. S. and Pratt, D. A. (2018) Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent. Sci. 4, 387-396.
  45. Song, X. and Long, D. (2020) Nrf2 and ferroptosis: a new research direction for neurodegenerative diseases. Front. Neurosci. 14, 267.
  46. Sulzmaier, F. J., Li, Z., Nakashige, M. L., Fash, D. M., Chain, W. J. and Ramos, J. W. (2012) Englerin A selectively induces necrosis in human renal cancer cells. PLoS One 7, e48032.
  47. Sundstrom, J., Bodegard J., Bollmann, A., Vervloet, M. G., Mark, P. B., Karasik, A., Taveira-Gomes, T., Botana, M., Birkeland, K. I., Thuressn, M., Jager, L., Sood, M. M., VanPottelbergh, M. and Tangri, N.; Tangri N; CaReMe CKD Investigators (2022) Prevalence, outcomes, and cost of chronic kidney disease in a contemporary population of 2.4 million patients from 11 countries: the CaReMe CKD study. Lancet Reg. Health Eur. 20, 100438.
  48. Suzuki, T., Motohashi, H. and Yamamoto, M. (2013) Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol. Sci. 34, 340-346. https://doi.org/10.1016/j.tips.2013.04.005
  49. van Asbeck, A. H., Dieker, J., Boswinkel, M., van der Vlag, J. and Brock, R. (2020) Kidney-targeted therapies: a quantitative perspective. J. Control. Release 328, 762-775. https://doi.org/10.1016/j.jconrel.2020.09.022
  50. Wenzel, S. E., Tyurina, Y. Y., Zhao, J., Croix, C. M. S., Dar, H. H., Mao, G., Tyurin, V. A., Anthonymuthu, T. S., Kapralov, A. K., Amoscato, A. A., Mikulska-Ruminska, T., Kapralov, A. A., Amoscato, A. A., Mikulska-Ruminska, K., Shrivastava, I. H., Kenny, E. M., Yang, Q., Rosenbaum, J. C., Sparvero, L. J., Emelt, D. R., Wen, X., Minami, Y., Qu, F., Watkins, S. C., Holman, T. R., VanDemark, A. P., Kellum, J. A., Bahar, I., Bayir, H. and Kagan, V. E. (2017) PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 171, 628-641.e26. https://doi.org/10.1016/j.cell.2017.09.044
  51. Yi, J., Zhu, J., Wu, J., Thompson, C. B. and Jiang, X. (2020) Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc. Natl. Acad. Sci. U. S. A. 117, 31189-31197. https://doi.org/10.1073/pnas.2017152117
  52. Zhang, B., Chen, X., Ru, F., Gan, Y., Li, B., Xia, W., Dai, G., He, Y. and Chen, Z. (2021) Liproxstatin-1 attenuates unilateral ureteral obstruction-induced renal fibrosis by inhibiting renal tubular epithelial cells ferroptosis. Cell Death Dis. 12, 843.
  53. Zhang, Y., Mou, Y., Zhang, J., Suo, C., Zhou, H., Gu, M., Wang, Z. and Tan, R. (2022) Therapeutic implications of ferroptosis in renal fibrosis. Front. Mol. Biosci. 9, 890766.
  54. Zhao, Z., Wu, J., Xu, H., Zhou, C., Han, B., Zhu, H., Hu, Z., Ma, Z., Ming, Z., Yao, Y., Zeng, R. and Xu, G. (2020) XJB-5-131 inhibited ferroptosis in tubular epithelial cells after ischemia-reperfusion injury. Cell Death Dis. 11, 629.
  55. Zhou, L., Xue, X., Hou, Q. and Dai, C. (2022) Targeting ferroptosis attenuates interstitial inflammation and kidney fibrosis. Kidney Dis. 8, 57-71. https://doi.org/10.1159/000517723
  56. Zou, W., Chen, C., Zhong, Y., An, J., Zhang, X., Yu, Y., Yu, Z. and Fu, J. (2013) PI3K/Akt pathway mediates Nrf2/ARE activation in human L02 hepatocytes exposed to low-concentration HBCDs. Environ. Sci. Technol. 47, 12434-12440. https://doi.org/10.1021/es401791s