Acknowledgement
This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean Government Ministry of Science and Information and Communication Technologies (NRF-2021R1A5A2031612, 2021R1A2B5B03086410, 2022R1G1A1011829, 2022R1A2C1092933) and Inha University Research Grant.
References
- Ahmadi, Z. and Ashrafizadeh, M. (2020) Melatonin as a potential modulator of Nrf2. Fundam. Clin. Pharmacol. 34, 11-19. https://doi.org/10.1111/fcp.12498
- Baba, Y., Higa, J. K., Shimada, B. K., Horiuchi, K. M., Suhara, T., Kobayashi, M., Woo, J. D., Aoyagi, H., Marh, K. S., Kitaoka, H. and Matsui, T. (2018) Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 314, H659-H668. https://doi.org/10.1152/ajpheart.00452.2017
- Berger, W., Chandt, M. T. M. and Cairns, C. B. (2007) Zileuton: clinical implications of 5-Lipoxygenase inhibition in severe airway disease. Int. J. Clin. Pract. 61, 663-676. https://doi.org/10.1111/j.1742-1241.2007.01320.x
- Czapski, G. A., Czubowicz, K. and Strosznajder, R. P. (2012) Evaluation of the antioxidative properties of lipoxygenase inhibitors. Pharmacol. Rep. 64, 1179-1188. https://doi.org/10.1016/S1734-1140(12)70914-3
- Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., Patel, D. N., Bauer, A. J., Cantley, A. M., Yang, W. S., Morrison, B., 3rd and Stockwell, B. R. (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060-1072. https://doi.org/10.1016/j.cell.2012.03.042
- Feng, Q., Yu, X., Qiao, Y., Pan, S., Wang, R., Zheng, B., Wang, H., Ren, K.-D., Liu, H. and Yang, Y. (2022) Ferroptosis and Acute Kidney Injury (AKI): molecular mechanisms and therapeutic potentials. Front. Pharmacol. 13, 858676.
- Ferlazzo, N., Andolina, G., Cannata, A., Costanzo, M. G., Rizzo, V., Curro, M., Ientile, R. and Caccamo, D. (2020) Is melatonin the cornucopia of the 21st century? Antioxidants 9, 1088.
- Friedmann Angeli, J. P., Schneider, M., Proneth, B., Tyurina, Y. Y., Tyurina, V. A., Hammond, V. J., Herbach, N., Aichler, M., Walch, A., Eggenhofer, E., Basavarajappa, D., Radmark, O., Kobayashi, S., Seibt, T., Beck, H., Neff, F., Esposito, I., Wanke, R., Forster, H., Yefremova, O., Heinrichmeyer, M., Bornkamm, G. W., Geissler, E. K., Thomas, S. B., Stockwell, B. R., O'Donnell, V. B., Kagan, V. E., Schick, J. A. and Conrad, M. (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180-1191. https://doi.org/10.1038/ncb3064
- Guohua, F., Tieyuan, Z., Xinping, M. and Juan, X. (2021) Melatonin protects against PM2.5-induced lung injury by inhibiting ferroptosis of lung epithelial cells in a Nrf2-dependent manner. Ecotoxicol. Environ. Saf. 223, 112588.
- He, F., Antonucci, L., Yamachika, S., Zhang, Z., Taniguchi, K., Umemura, A., Hatzivassiliou, G., Roose-Girma, M., Reina-Campos, M., Duran, A., Diaz-Meco, M. T., Moscat, J., Sun, B. and Karin, M. (2020) NRF2 activates growth factor genes and downstream AKT signaling to induce mouse and human hepatomegaly. J. Hepatol. 72, 1182-1195. https://doi.org/10.1016/j.jhep.2020.01.023
- Ide, S., Kobayashi, Y., Ide, K., Strausser, S. A., Abe, K., Herbek, S., O'Brien, L. L., Crowley, S. D., Barisoni, L., Tata, A., Tata, P. R. and Souma, T. (2021) Ferroptotic stress promotes the accumulation of pro-inflammatory proximal tubular cells in maladaptive renal repair. Elife 10, e68603.
- Israel, E., Dermarkarian, R., Rosenberg, M., Sperling, R., Taylor, G., Rubin, P. and Drazen, J. M. (1990) The effects of a 5-lipoxygenase inhibitor on asthma induced by cold, dry air. N. Engl. J. Med. 323, 1740-1744. https://doi.org/10.1056/NEJM199012203232505
- Kellum, J. A., Romagnani, P., Ashuntantang, G., Ronco, C., Zarbock, A. and Anders, H. J. (2021) Acute kidney injury. Nat. Rev. Dis. Primers 7, 52.
- Kim, S., Kang, S-W., Joo, J., Han, S. H., Shin, H., Nam, B. Y., Park, J., Yoo, T.-H., Kim, G., Lee, P. and Park, J. T. (2021) Characterization of ferroptosis in kidney tubular cell death under diabetic conditions. Cell Death Dis. 12, 160.
- Kovesdy, C. P. (2022) Epidemiology of chronic kidney disease: an update 2022. Kidney Int. Suppl. (2011) 12, 7-11. https://doi.org/10.1016/j.kisu.2021.11.003
- Kurcer, Z., Oguz, E., Ozbilge, H., Baba, F., Aksoy, N., Celik, H., Cakir, H. and Gezen, M. R. (2007) Melatonin protects from ischemia/reperfusion-induced renal injury in rats: this effect is not mediated by proinflammatory cytokines. J. Pineal Res. 43, 172-178. https://doi.org/10.1111/j.1600-079X.2007.00459.x
- Lee, J. J., Chang-Chien, G. P., Lin, S., Hsiao, Y. T., Ke, M. C., Chen, A. and Lin, T. K. (2022) 5-Lipoxygenase inhibition protects retinal pigment epithelium from sodium iodate-induced ferroptosis and prevents retinal degeneration. Oxid. Med. Cell. Longev. 2022, 1792894.
- Lei, G., Zhuang, L. and Gan, B. (2021) mTORC1 and ferroptosis: regulatory mechanisms and therapeutic potential. BioEssays 43, e2100093.
- Li, D., Pan, J. H., Huang, X. F., Liao, Y. Q., Ling, Y. J. and Luo, J. Y. (2023) Effect of melatonin on oxidative stress indicators in animal models of fibrosis: a systematic review and meta-analysis. Free Radic. Biol. Med. 195, 158-177.
- Li, J., Cao, F., Yin, H. L., Huang, Z. J., Lin, Z. T., Mao, N., Sun, B. and Wang, G. (2020) Ferroptosis: past, present and future. Cell Death Dis. 11, 88.
- Li, M., Yang, N., Hao, L., Zhou, W., Li, L., Liu, L., Yang, F., Xu, L., Yao, G., Zhu, C., Xu, W. and Fang, S. (2022) Melatonin inhibits the ferroptosis pathway in rat bone marrow mesenchymal stem cells by activating the PI3K/AKT/mTOR signaling axis to attenuate steroid-induced osteoporosis. Oxid. Med. Cell. Longev. 18, 8223737.
- Lin, H. C., Lin, T. H., Wu, M. Y., Chiu, Y. C., Tang, C. H., Hour, M. J., Liou, H. C., Tu, H. J., Yang, R. S. and Fu, W. M. (2014) 5-Lipoxygenase inhibitors attenuate TNF-α-induced inflammation in human synovial fibroblasts. PLoS One 9, e107890.
- Linkermann, A., Skouta, R., Himmerkus, N., Mulay, S. R., Dewitz, C., Zen, F. D., Prokai, A., Zuchtriegel, G., Krombach, F., Welz, P.-S., Weinlich, R., Berghe, T. V., Vandenabeele, P., Pasparakis, M., Bleich, M., Weinberg, J. M., Reichel, C. A., Brasen, J. H., Kunzendorf, U., Anders, H.-J., Stockwell, B. R., Green, D. R. and Krautwald, S. (2014) Synchronized renal tubular cell death involves ferroptosis. Proc. Natl. Acad. Sci. U. S. A. 111, 16836-16841. https://doi.org/10.1073/pnas.1415518111
- Liu, C., He, P., Guo, Y., Tian, Q., Wang, J., Wang, G., Zhang, Z. and Li, M. (2022a) Taurine attenuates neuronal ferroptosis by regulating GABAB/AKT/GSK3β/β-catenin pathway after subarachnoid hemorrhage. Free Radic. Biol. Med. 193, 795-807. https://doi.org/10.1016/j.freeradbiomed.2022.11.003
- Liu, H., Zhao, L., Wang, M., Yang, K., Jin, Z., Zhao, C. and Shi, G. (2022b) FNDC5 causes resistance to sorafenib by activating the PI3K/Akt/Nrf2 pathway in hepatocellular carcinoma cells. Front. Oncol. 12, 852095.
- Liu, Y., Wang, W., Li, Y., Xiao, Y., Cheng, J. and Jia, J. (2015) The 5-lipoxygenase inhibitor zileuton confers neuroprotection against glutamate oxidative damage by inhibiting ferroptosis. Biol. Pharm. Bull. 38, 1234-1239. https://doi.org/10.1248/bpb.b15-00048
- Liu, Y., Wang, Y., Liu, J., Kang, R. and Tang, D. (2021) Interplay between MTOR and GPX4 signaling modulates autophagy-dependent ferroptotic cancer cell death. Cancer Gene Ther. 28, 55-63. https://doi.org/10.1038/s41417-020-0182-y
- Luyckx, V. A., Tonelli, M. and Stanifer, J. W. (2018) The global burden of kidney disease and the sustainable development goals. Bull. World Health Organ. 96, 414-422D.
- Ma, H., Wang, X., Zhang, W., Li, H., Zhao, W., Sun, J. and Yang, M. (2020) Melatonin suppresses ferroptosis induced by high glucose via activation of the Nrf2/HO-1 signaling pathway in type 2 diabetic osteoporosis. Oxid. Med. Cell. Longev. 2020, 9067610.
- Mahmood, D. (2019) Pleiotropic effects of melatonin. Drug Res. (Stuttg.) 69, 65-74. https://doi.org/10.1055/a-0656-6643
- Manning, B. D. and Toker, A. (2017) AKT/PKB signaling: navigating the network. Cell 169, 381-405. https://doi.org/10.1016/j.cell.2017.04.001
- Maremonti, F., Meyer, C. and Linkermann, A. (2022) Mechanisms and models of kidney tubular necrosis and nephron loss. J. Am. Soc. Nephrol. 33, 472-486. https://doi.org/10.1681/ASN.2021101293
- Martin-Sanchez, D., Ruiz-Andres, O., Poveda, J., Carrasco, S., Cannata-Ortiz, P., Sanchez-Nino, M. D., Ortega, M. R., Egido, J., Linkermann, A., Ortiz, A. and Sanz, A. B. (2017) Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI. J. Am. Soc. Nephrol. 28, 218-229 https://doi.org/10.1681/ASN.2015121376
- Martinez-Klimova, E., Aparicio-Trejo, O. E., Tapia, E. and Pedraza-Chaverri, J. (2019) Unilateral ureteral obstruction as a model to investigate fibrosis-attenuating treatments. Biomolecules 9, 141.
- Mashima, R. and Okuyama, T. (2015) The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox. Biol. 6, 297-310. https://doi.org/10.1016/j.redox.2015.08.006
- Matsushita, K., Ballew, S. H., Wang, A. Y. M., Kalyesubula, R., Schaeffner, E. and Agarwal, R. (2022) Epidemiology and risk of cardiovascular disease in populations with chronic kidney disease. Nat. Rev. Nephrol. 18, 696-707 https://doi.org/10.1038/s41581-022-00616-6
- Montford, J. R., Bauer, C., Dobrinskikh, E., Hopp, K., Levi, M., Weiser-Evans, M., Nemenoff, R. and Furgeson, S. B. (2019) Inhibition of 5-lipoxygenase decreases renal fibrosis and progression of chronic kidney disease. Am. J. Physiol. Renal Physiol. 316, F732-F742. https://doi.org/10.1152/ajprenal.00262.2018
- Montilla, P., Cruz, A., Padillo, F. J., Tunez, I., Gascon, F., Munoz, M. C., Gomez, M. and Pera, C. (2001) Melatonin versus vitamin E as protective treatment against oxidative stress after extra-hepatic bile duct ligation in rats. J. Pineal Res. 31, 138-144. https://doi.org/10.1034/j.1600-079x.2001.310207.x
- Mulay, S. R., Linkermann, A. and Anders, H. J. (2016) Necroinflammation in kidney disease. J. Am. Soc. Nephrol. 27, 27-39. https://doi.org/10.1681/ASN.2015040405
- NaveenKumar, S. K., Hemshekhar, M., Kemparaju, K. and Girish, K. S. (2019) Hemin-induced platelet activation and ferroptosis is mediated through ROS-driven proteasomal activity and inflammasome activation: protection by melatonin. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 2303-2316. https://doi.org/10.1016/j.bbadis.2019.05.009
- Ou, Y., Wang, S. J., Li, D., Chu, B. and Gu, W. (2016) Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc. Natl. Acad. Sci. U. S. A. 113, E6806-E6812. https://doi.org/10.1073/pnas.1607152113
- Priante, G., Gianesello, L., Ceol, M., Del Prete, D. and Anglani, F. (2019) Cell death in the kidney. Int. J. Mol. Sci. 20, 3598.
- Quiroz, Y., Ferrebuz, A., Romero, F., Vaziri, N. D. and RodriguezIturbe, B. (2008) Melatonin ameliorates oxidative stress, inflammation, proteinuria, and progression of renal damage in rats with renal mass reduction. Am. J. Physiol. Renal Physiol. 294, F336-F344. https://doi.org/10.1152/ajprenal.00500.2007
- Shah, R., Shchepinov, M. S. and Pratt, D. A. (2018) Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent. Sci. 4, 387-396.
- Song, X. and Long, D. (2020) Nrf2 and ferroptosis: a new research direction for neurodegenerative diseases. Front. Neurosci. 14, 267.
- Sulzmaier, F. J., Li, Z., Nakashige, M. L., Fash, D. M., Chain, W. J. and Ramos, J. W. (2012) Englerin A selectively induces necrosis in human renal cancer cells. PLoS One 7, e48032.
- Sundstrom, J., Bodegard J., Bollmann, A., Vervloet, M. G., Mark, P. B., Karasik, A., Taveira-Gomes, T., Botana, M., Birkeland, K. I., Thuressn, M., Jager, L., Sood, M. M., VanPottelbergh, M. and Tangri, N.; Tangri N; CaReMe CKD Investigators (2022) Prevalence, outcomes, and cost of chronic kidney disease in a contemporary population of 2.4 million patients from 11 countries: the CaReMe CKD study. Lancet Reg. Health Eur. 20, 100438.
- Suzuki, T., Motohashi, H. and Yamamoto, M. (2013) Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol. Sci. 34, 340-346. https://doi.org/10.1016/j.tips.2013.04.005
- van Asbeck, A. H., Dieker, J., Boswinkel, M., van der Vlag, J. and Brock, R. (2020) Kidney-targeted therapies: a quantitative perspective. J. Control. Release 328, 762-775. https://doi.org/10.1016/j.jconrel.2020.09.022
- Wenzel, S. E., Tyurina, Y. Y., Zhao, J., Croix, C. M. S., Dar, H. H., Mao, G., Tyurin, V. A., Anthonymuthu, T. S., Kapralov, A. K., Amoscato, A. A., Mikulska-Ruminska, T., Kapralov, A. A., Amoscato, A. A., Mikulska-Ruminska, K., Shrivastava, I. H., Kenny, E. M., Yang, Q., Rosenbaum, J. C., Sparvero, L. J., Emelt, D. R., Wen, X., Minami, Y., Qu, F., Watkins, S. C., Holman, T. R., VanDemark, A. P., Kellum, J. A., Bahar, I., Bayir, H. and Kagan, V. E. (2017) PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 171, 628-641.e26. https://doi.org/10.1016/j.cell.2017.09.044
- Yi, J., Zhu, J., Wu, J., Thompson, C. B. and Jiang, X. (2020) Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc. Natl. Acad. Sci. U. S. A. 117, 31189-31197. https://doi.org/10.1073/pnas.2017152117
- Zhang, B., Chen, X., Ru, F., Gan, Y., Li, B., Xia, W., Dai, G., He, Y. and Chen, Z. (2021) Liproxstatin-1 attenuates unilateral ureteral obstruction-induced renal fibrosis by inhibiting renal tubular epithelial cells ferroptosis. Cell Death Dis. 12, 843.
- Zhang, Y., Mou, Y., Zhang, J., Suo, C., Zhou, H., Gu, M., Wang, Z. and Tan, R. (2022) Therapeutic implications of ferroptosis in renal fibrosis. Front. Mol. Biosci. 9, 890766.
- Zhao, Z., Wu, J., Xu, H., Zhou, C., Han, B., Zhu, H., Hu, Z., Ma, Z., Ming, Z., Yao, Y., Zeng, R. and Xu, G. (2020) XJB-5-131 inhibited ferroptosis in tubular epithelial cells after ischemia-reperfusion injury. Cell Death Dis. 11, 629.
- Zhou, L., Xue, X., Hou, Q. and Dai, C. (2022) Targeting ferroptosis attenuates interstitial inflammation and kidney fibrosis. Kidney Dis. 8, 57-71. https://doi.org/10.1159/000517723
- Zou, W., Chen, C., Zhong, Y., An, J., Zhang, X., Yu, Y., Yu, Z. and Fu, J. (2013) PI3K/Akt pathway mediates Nrf2/ARE activation in human L02 hepatocytes exposed to low-concentration HBCDs. Environ. Sci. Technol. 47, 12434-12440. https://doi.org/10.1021/es401791s