DOI QR코드

DOI QR Code

우라늄 동위원소의 분석과 활용에 대한 고찰

A Review on Analysis of Natural Uranium Isotopes and Their Application

  • 김영민 (한국기초과학지원연구원 환경분석연구부)
  • 투고 : 2023.09.06
  • 심사 : 2023.10.11
  • 발행 : 2023.10.30

초록

분석 기기의 발달과 더불어 자연 우라늄 동위원소 비(238U/235U)와 분별작용에 대한 연구가 점차 증가하고 있다. MC-ICP-MS을 이용한 우라늄 동위원소의 정밀한 분석이 가능해지면서 137.88의 고정된 값으로 여겨졌던 자연 물질의 238U/235U 비가 우라늄 동위원소 분별작용에 의해 최대 수 퍼밀까지 변화할 수 있다는 것이 밝혀졌다. 본 고찰에서는 우라늄 동위원소의 분석과 표기에 대해 간략하게 설명한 후, 지구 상 주요 물질들의 우라늄 동위원소 값(δ238U)의 변화와 지구화학적 특징을 살펴본다. 특히, 우라늄 광상의 유형과 특징에 따른 우라늄 동위원소 조성 연구 사례를 소개하고, 상대적으로 큰 δ238U 범위를 야기하는 우라늄 동위원소 분별작용에 대해 논의한다. 이를 바탕으로 고준위 방사성 폐기물 처분장의 모의 실험을 위한 자연 유사 모델로서 우라늄 광상이 갖는 연구 의의에 대해 고찰한다.

Due to enhanced precision in uranium isotope measurements with MC-ICP-MS, there has been a surge in studies concerning the naturally occurring uranium isotope ratio (238U/235U) and its associated fractionation processes. Several researchers have highlighted that the 238U/235U ratio, previously assumed to be constant, can vary by several per mil depending on different natural fractionation processes. This review paper outlines the uranium isotope values (δ238U) for major terrestrial reservoirs and their variations. It discusses the range of δ238U values and uranium isotope fractionation seen in uranium ore deposits, based on deposit type and ore-forming conditions. In conclusion, this paper emphasizes the importance of studies on uranium ore deposits. Such deposits serve as natural simulation models vital for designing high-level radioactive waste repository sites.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (2020R1C1C1008859) and a KBSI grant (C330120). We appreciated two anonymous reviewers for improving the manuscript.

참고문헌

  1. Andersen, M.B., Elliott, T., Freymuth, H., Sims, K.W., Niu, Y. and Kelley, K.A. (2015) The terrestrial uranium isotope cycle. Nature, v.517, p.356-359. doi: 10.1038/nature14062
  2. Andersen, M.B., Stirling, C.H. and Weyer, S. (2017) Uranium isotope fractionation. Reviews in Mineralogy and Geochemistry, v.82, p.799-850. doi: 10.2138/rmg.2017.82.19
  3. Andersen, M.B., Vance, D., Morford, J.L., Bura-Nakic, E., Breitenbach, S.F. and Och, L. (2016) Closing in on the marine 238U/235U budget. Chemical Geology, v.420, p.11-22. doi: 10.1016/j.chemgeo.2015.10.041
  4. Bopp IV, C.J., Lundstrom, C.C., Johnson, T.M. and Glessner, J.J. (2009) Variations in 238U/235U in uranium ore deposits: Isotopic signatures of the U reduction process?. Geology, v.37, p.611-614. doi: 10.1130/G25550A.1
  5. Bourdon, B., Turner, S., Henderson, G.M. and Lundstrom, C.C. (2003) Introduction to U-series geochemistry. Reviews in mineralogy and geochemistry, v.52, p.1-21. doi: 10.2113/0520001
  6. Brennecka, G.A., Borg, L.E., Hutcheon, I.D., Sharp, M.A. and Anbar, A.D. (2010) Natural variations in uranium isotope ratios of uranium ore concentrates: Understanding the 238U/235U fractionation mechanism. Earth and Planetary Science Letters, v.291, p.228-233. doi: 10.1016/j.epsl.2010.01.023
  7. Brennecka, G.A., Wasylenki, L.E., Bargar, J.R., Weyer, S. and Anbar, A.D. (2011) Uranium isotope fractionation during adsorption to Mn-oxyhydroxides. Environmental Science & Technology, v.45, p.1370-1375. doi: 10.1021/es103061v
  8. Chen, J.H. and Wasserburg, G.J. (1981) The isotopic composition of uranium and lead in Allende inclusions and meteoritic phosphates. Earth and Planetary Science Letters, v.52, p.1-15. doi: 10.1016/0012-821X(81)90202-8
  9. Cheng, H., Edwards, R.L., Shen, C.C., Polyak, V.J., Asmerom, Y., Woodhead, J., Hellstrom, J., Wang, Y., Kong, X., Spotl. C., Wang, X. and Alexander Jr. E.C. (2013) Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters, v.371, p.82-91. doi: 10.1016/j.epsl.2013.04.006
  10. Chernyshev, I.V., Golubev, V.N., Chugaev, A.V. and Baranova, A. N. (2014) 238U/235U isotope ratio variations in minerals from hydrothermal uranium deposits. Geochemistry International, v.52, p.1013-1029. doi: 10.1134/S0016702914120027
  11. Cowan, G.A. and Adler, H.H. (1976) The variability of the natural abundance of 235U. Geochimica et Cosmochimica Acta, v.40, p.1487-1490. doi: 10.1016/0016-7037(76)90087-9
  12. Cuney, M. (2010) Evolution of uranium fractionation processes through time: driving the secular variation of uranium deposit types. Economic Geology, v.105, p.553-569. doi: 10.2113/gsecongeo.105.3.553
  13. De Laeter, J.R., Rosman, K.J.R. and Smith, C.L. (1980) The Oklo natural reactor: cumulative fission yields and retentivity of the symmetric mass region fission products. Earth and Planetary Science Letters, v.50, p.238-246. doi: 10.1016/0012-821X(80)90135-1
  14. Escareno-Juarez, E., Pardo, R., Gasco-Leonarte, C., Vega, M., Sanchez-Bascones, M.I. and Barrado-Olmedo, A.I. (2019) Determination of natural uranium by various analytical techniques in soils of Zacatecas State (Mexico). Journal of Radioanalytical and Nuclear Chemistry, v.319, p.1135-1144. doi: 10.1007/s10967-019-06428-6
  15. Gauthier-Lafaye, F., Holliger, P. and Blanc, P.L. (1996) Natural fission reactors in the Franceville basin, Gabon: A review of the conditions and results of a "critical event" in a geologic system. Geochimica et Cosmochimica Acta, v.60, p.4831-4852. doi: 10.1016/S0016-7037(96)00245-1
  16. Goldmann, A., Brennecka, G., Noordmann, J., Weyer, S. and Wadhwa, M. (2015) The uranium isotopic composition of the Earth and the Solar System. Geochimica et Cosmochimica Acta, v.148, p.145-158. doi: 10.1016/j.gca.2014.09.008
  17. Grenthe, I., Fuger, J., Konings, R.J., Lemire, R.J., Muller, A.B., Nguyen-Trung, C. and Wanner, H. (1992) Chemical thermodynamics of uranium (Vol. 1). Amsterdam: Elsevier.
  18. Hiess, J., Condon, D.J., McLean, N. and Noble, S.R. (2012) 238U/235U systematics in terrestrial uranium-bearing minerals. Science, v.335, p.1610-1614. doi: 10.1126/science.1215507
  19. Horwitz, E.P., Dietz, M.L., Chiarizia, R., Diamond, H., Essling, A.M. and Graczyk, D. (1992) Separation and preconcentration of uranium from acidic media by extraction chromatography. Analytica Chimica Acta, v.266, p.25-37. doi: 10.1016/0003-2670(92)85276-C
  20. Hwang, J. and Moon, S.H. (2018) Geochemical evidence for K-metasomatism related to uranium enrichment in Daejeon granitic rocks near the central Ogcheon Metamorphic Belt, Korea. Geosciences Journal, v.22, p.1001-1013. doi: 10.1007/s12303-018-0053-9
  21. Hwang, J. and Yi, K. (2023) Occurrence, Chemical, and Pb-isotopic Composition of Uraninite: A Verification of the Effective Source of Uranium in a Granite Aquifer of the Daejeon Area, South Korea. Aquatic Geochemistry, p. 1-15. doi: 10.1007/s10498-023-09415-2
  22. Ku, T.L., Mathieu, G.G. and Knauss, K.G. (1977) Uranium in open ocean: concentration and isotopic composition. Deep Sea Research, v.24, p.1005-1017. doi: 10.1016/0146-6291(77)90571-9
  23. Kuroda, P.K. (1982). The Oklo phenomenon. The Origin of the Chemical Elements and the Oklo Phenomenon, p.31-55.
  24. Langmuir, D. (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmochimica Acta, v.42, p.547-569. doi: 10.1016/0016-7037(78)90001-7
  25. Lounsbury, M. (1956) The natural abundances of the uranium isotopes. Canadian Journal of Chemistry, v.34, p.259-264. doi: 10.1139/v56-039
  26. Murphy, M.J., Froehlich, M.B., Fifield, L.K., Turner, S.P. and Schaefer, B.F. (2015) In-situ production of natural 236U in groundwaters and ores in high-grade uranium deposits. Chemical Geology, v.410, p.213-222. doi: 10.1016/j.chemgeo.2015.06.024
  27. Murphy, M.J., Stirling, C.H., Kaltenbach, A., Turner, S.P. and Schaefer, B.F. (2014) Fractionation of 238U/235U by reduction during low temperature uranium mineralisation processes. Earth and Planetary Science Letters, v.388, p.306-317. doi: 10.1016/j.epsl.2013.11.034
  28. Nier, A.O. (1939) The isotopic constitution of uranium and the half-lives of the uranium isotopes. I. Physical Review, v.55, p.150. doi: 10.1103/PhysRev.55.150
  29. Noordmann, J., Weyer, S., Georg, R.B., Jons, S. and Sharma, M. (2016) 238U/235U isotope ratios of crustal material, rivers and products of hydrothermal alteration: new insights on the oceanic U isotope mass balance. Isotopes in environmental and health studies, v.52, p.141-163. doi: 10.1080/10256016.2015.1047449
  30. Palme, H. and O'Neill, H.S.C. (2003) Cosmochemical estimates of mantle composition. Treatise on geochemistry, v.2, p.1-38. doi: 10.1016/B0-08-043751-6/02177-0
  31. Patterson, C., Tilton, G. and Inghram, M. (1955) Age of the Earth. Science, v.121, p.69-75. doi: 10.1126/science.121.3134.69
  32. Pohl, W.L. (2011) Economic geology: principles and practice. John Wiley & Sons.
  33. Rademacher, L.K., Lundstrom, C.C., Johnson, T.M., Sanford, R.A., Zhao, J. and Zhang, Z. (2006) Experimentally determined uranium isotope fractionation during reduction of hexavalent U by bacteria and zero valent iron. Environmental Science & Technology, v.40, p.6943-6948. doi: 10.1021/es0604360
  34. Richter, S., Alonso-Munoz, A., Eykens, R., Jacobsson, U., Kuehn, H., Verbruggen, A., Aregbe, Y., Wellum, R. and Keegan, E. (2008) The isotopic composition of natural uranium samples-Measurements using the new 233U/236U double spike IRMM-3636. International Journal of Mass Spectrometry, v.269, p.145-148. doi: 10.1016/j.ijms.2007.09.012
  35. Richter, S., Eykens, R., Kuhn, H., Aregbe, Y., Verbruggen, A. and Weyer, S. (2010) New average values for the n (238U)/n (235U) isotope ratios of natural uranium standards. International Journal of Mass Spectrometry, v.295, p.94-97. doi: 10.1016/j.ijms.2010.06.004
  36. Robb, L. (2020) Introduction to ore-forming processes. John Wiley & Sons.
  37. Romaniello, S.J., Herrmann, A.D. and Anbar, A.D. (2013) Uranium concentrations and 238U/235U isotope ratios in modern carbonates from the Bahamas: Assessing a novel paleoredox proxy. Chemical Geology, v.362, p.305-316. doi: 10.1016/j.chemgeo.2013.10.002
  38. Rudnick, R.L. and Gao, S. (2003) Composition of the continental crust. Treatise Geochem, v.3, p.1-64. https://doi.org/10.1016/B0-08-043751-6/03016-4
  39. Russell, W.A., Papanastassiou, D.A. and Tombrello, T.A. (1978) Ca isotope fractionation on the Earth and other solar system materials. Geochimica et cosmochimica acta, v.42, p.1075-1090. doi: 10.1016/0016-7037(78)90105-9
  40. Shin, I., Kim, S., & Shin, D. (2016). Mineralogy and sulfur isotope compositions of the uraniferous black slates in the Ogcheon Metamorphic Belt, South Korea. Journal of Geochemical Exploration, v.169, p.1-12. doi: 10.1016/j.gexplo.2016.07.008
  41. Steiger, R.H. and Jager, E. (1977) Subcommission on geochronology: convention on the use of decay constants in geo-and cosmochronology. Earth and Planetary Science Letters, v.36, p.359-362. doi: 10.1016/0012-821X(77)90060-7
  42. Stirling, C.H., Andersen, M.B., Potter, E.K. and Halliday, A.N. (2007) Low-temperature isotopic fractionation of uranium. Earth and Planetary Science Letters, v.264, p.208-225. doi: 10.1016/j.epsl.2007.09.019
  43. Stirling, C.H., Halliday, A.N. and Porcelli, D. (2005) In search of live 247Cm in the early solar system. Geochimica et Cosmochimica Acta, v.69, p.1059-1071. doi: 10.1016/j.gca.2004.06.034
  44. Tissot, F.L. and Dauphas, N. (2015) Uranium isotopic compositions of the crust and ocean: Age corrections, U budget and global extent of modern anoxia. Geochimica et Cosmochimica Acta, v.167, p.113-143. doi: 10.1016/j.gca.2015.06.034
  45. Tissot, F.L., Dauphas, N. and Grossman, L. (2016) Origin of uranium isotope variations in early solar nebula condensates. Science Advances, v.2, p.e1501400. doi: 10.1126/sciadv.1501400
  46. Uvarova, Y.A., Kyser, T.K., Geagea, M.L. and Chipley, D. (2014) Variations in the uranium isotopic compositions of uranium ores from different types of uranium deposits. Geochimica et cosmochimica acta, v.146, p.1-17. doi: 10.1016/j.gca.2014.09.034
  47. Weyer, S., Anbar, A.D., Gerdes, A., Gordon, G.W., Algeo, T.J. and Boyle, E.A. (2008) Natural fractionation of 238U/235U. Geochimica et Cosmochimica Acta, v.72, p.345-359. doi: 10.1016/j.gca.2007.11.012
  48. Wohlers, A. and Wood, B.J. (2015) A Mercury-like component of early Earth yields uranium in the core and high mantle 142Nd. Nature, v.520, p.337-340. doi: 10.1038/nature14350
  49. Wood, B.J., Blundy, J.D. and Robinson, J.A.C. (1999) The role of clinopyroxene in generating U-series disequilibrium during mantle melting. Geochimica et Cosmochimica Acta, v.63, p.1613-1620. doi: 10.1016/S0016-7037(98)00302-0
  50. Zhang, R., Nadeau, K., Gautier, E.A., Babay, P.A., Ramella, J.L., Virgolici, M., Serban, A.E., Fugaru, V., Kimura, Y. Venchiarutti, C., Richter, R., Aregbe, Y., Varga, Z., Wallenius, M., Mayer, K., Seo, H., Choi, J.Y., Tobi, C., Fayek, M., Sharpe, R., Samperton, K.M., Genetti, V.D., Lindvall, R.E., Inglis, J.D., Denton, J.S., Reinhard, A.A., Francisco, B., Zhao, X., Kieser, W., He, J., Gao, Y., Meija, J., El-Jaby A., Yang, L. and Mester Z. (2022) Certification of uranium isotope amount ratios in a suite of uranium ore concentrate certified reference materials. Geostandards and Geoanalytical Research, v.46, p.43-56. doi: doi.org/10.1111/ggr.12409