DOI QR코드

DOI QR Code

산불에 의한 지하수 토양 환경오염과 방사성 물질 분포 및 거동 영향 고찰

Groundwater and Soil Pollution Caused by Forest Fires, and Its Effects on the Distribution and Transport of Radionuclides in Subsurface Environments: Review

  • Hyojin Bae (Research Center for Geochronology and Isotope Analysis, Korea Basic Science Institute (KBSI)) ;
  • Sungwook Choung (Research Center for Geochronology and Isotope Analysis, Korea Basic Science Institute (KBSI)) ;
  • Jungsun Oh (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology (KICT)) ;
  • Jina Jeong (Department of Geology, Kyungpook National University (KNU))
  • 투고 : 2023.09.15
  • 심사 : 2023.10.16
  • 발행 : 2023.10.30

초록

산불은 연소 과정에서 다양한 오염물질을 배출하여 심각한 환경 문제를 초래할 수 있다. 최근 지구 온난화와 기후변화의 영향으로 전 세계적으로 산불의 규모와 빈도가 증가하여 환경에 미치는 영향 역시 급증할 것으로 예상된다. 한국은 산불 발생이 빈번한 동해안 지역에 원자력 발전소가 위치하고 있어, 중대 사고에 대비하여 산불 환경에서 방사성 핵종의 거동 특성에 대한 이해가 요구된다. 본 리뷰 논문에서는 산불이 지하수 토양 환경에 가져오는 변화와 오염 특성을 검토하고, 산불로 변화된 지하수 토양 환경에서의 방사성 핵종 거동을 고찰하였다. 특히, 변화된 지중환경의 여러 특성 중 방사성 핵종의 거동에 영향을 미칠 수 있는 요인들을 고려하였으며, 보다 구체적인 메커니즘 이해를 위해 산불이 초래하는 지하수 토양 환경 변화와 오염에 대한 연구의 필요성을 기술하였다.

Forest fires can generate numerous pollutants through the combustion of vegetation and cause serious environmental problems. The global warming and climate change will increase the frequency and scale of forest fires across the world. In Korea, many nuclear power plants (NPPs) are located in the East Coast where large-scale forest fires frequently occur. Therefore, understanding the sorption and transport characteristics of radionuclides in the forest fire areas is required against the severe accidents in NPPs. This article reviewed the physiochemical changes and contamination of groundwater and soil environments after forest fires, and discussed sorption and transport of radionuclides in the subsurface environment of burned forest area. We considered the geochemical factors of subsurface environment changed by forest fire. Moreover, we highlighted the need for studies on changes and contamination of subsurface environments caused by forest fires to understand more specific mechanisms.

키워드

과제정보

본 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 작성되었으며 (No. 2019R1A2C1004891), 2023년도 정부재원(과학기술정보통신부 여성과학기술인 R&D 경력복귀 지원사업)으로 한국여성과학기술인육성재단의 지원을 받아 작성되었습니다 (WISET 제 2023-308호).

참고문헌

  1. Abdollahi, M., Dewan, A. and Hassan, Q.K. (2019) Applicability of remote sensing-based vegetation water content in modeling lightning-caused forest fire occurrences. ISPRS International Journal of Geo-Information, v.8, p.143. doi: 10.3390/ijgi8030143
  2. Abraham, J., Dowling, K. and Florentine, S. (2017) The unquantified risk of post-fire metal concentration in soil: a review. Water, Air, & Soil Pollution, v.228, p.1-33. doi: 10.1007/s11270-017-3338-0
  3. Abram, N.J., Henley, B.J., Sen Gupta, A., Lippmann, T.J., Clarke, H., Dowdy, A.J., Sharples, J.J., Nolan, R.H., Zhang, T. and Wooster, M.J. (2021) Connections of climate change and variability to large and extreme forest fires in southeast Australia. Communications Earth & Environment, v.2, p.8. doi: 10.1038/s43247-020-00065-8
  4. Agbeshie, A.A., Abugre, S., Atta-Darkwa, T. and Awuah, R. (2022) A review of the effects of forest fire on soil properties. Journal of Forestry Research, v.33, p.1419-1441. doi: 10.1007/s11676-022-01475-4
  5. Agegnehu, G., Srivastava, A.K. and Bird, M.I. (2017) The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Applied soil ecology, v.119, p.156-170. doi: 10.1016/j.apsoil.2017.06.008
  6. Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S. and Ok, Y.S. (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, v.99, p.19-33. doi: 10.1016/j.chemosphere.2013.10.071
  7. Akdemir, E.A., Battye, W.H., Myers, C.B. and Aneja, V.P. (2022) Estimating NH 3 and PM 2.5 emissions from the Australia mega wildfires and the impact of plume transport on air quality in Australia and New Zealand. Environmental Science: Atmospheres, v.2, p.634-646. doi: 10.1039/d1ea00100k
  8. Alauzis, M.a.V., Mazzarino, M.a.J., Raffaele, E. and Roselli, L.a. (2004) Wildfires in NW Patagonia: long-term effects on a Nothofagus forest soil. Forest Ecology and Management, v.192, p.131-142. doi: 10.1016/j.foreco.2003.11.014
  9. Alexakis, D., Kokmotos, I., Gamvroula, D. and Varelidis, G. (2021) Wildfire effects on soil quality: Application on a suburban area of West Attica (Greece). Geosciences Journal, v.25, p.243-253. doi: 10.1007/s12303-020-0011-1
  10. Alexakis, D.E. (2020) Contaminated land by wildfire effect on ultramafic soil and associated human health and ecological risk. Land, v.9, p.409. doi: 10.3390/land9110409
  11. Aponte, C., de Groot, W.J. and Wotton, B.M. (2016) Forest fires and climate change: causes, consequences and management options. International Journal of Wildland Fire, v.25, p.i-ii. doi: 10.1071/wfv25n8_fo
  12. Ashworth, D., Shaw, G., Butler, A. and Ciciani, L. (2003) Soil transport and plant uptake of radio-iodine from near-surface groundwater. Journal of Environmental Radioactivity, v.70, p.99-114. doi: 10.1016/s0265-931x(03)00121-8
  13. Badia, D., Marti, C., Aguirre, A.J., Aznar, J.M., Gonzalez-Perez, J., De la Rosa, J., Leon, J., Ibarra, P. and Echeverria, T. (2014) Wildfire effects on nutrients and organic carbon of a Rendzic Phaeozem in NE Spain: changes at cm-scale topsoil. Catena, v.113, p.267-275. doi: 10.1016/j.catena.2013.08.002
  14. Bae, H., Choung, S. and Jeong, J. (2022) A New Approach on Adsorption and Transport of Cesium in Organic Matter-rich Soil and Groundwater Environments Changed by Wildfires. Journal of Korean Society on Water Environment, v.38, p.10-18. [Korean Literature] doi: 10.15681/KSWE.2022.38.1.10
  15. Bar, S., Parida, B.R., Roberts, G., Pandey, A.C., Acharya, P. and Dash, J. (2021) Spatio-temporal characterization of landscape fire in relation to anthropogenic activity and climatic variability over the Western Himalaya, India. GIScience & Remote Sensing, v.58, p.281-299. doi: 10.1080/15481603.2021.1879495
  16. Bodi, M.B., Martin, D.A., Balfour, V.N., Santin, C., Doerr, S.H., Pereira, P., Cerda, A. and Mataix-Solera, J. (2014) Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth-Science Reviews, v.130, p.103-127. doi: 10.1016/j.earscirev.2013.12.007
  17. Bormann, B.T., Homann, P.S., Darbyshire, R.L. and Morrissette, B.A. (2008) Intense forest wildfire sharply reduces mineral soil C and N: the first direct evidence. Canadian Journal of Forest Research, v.38, p.2771-2783. doi: 10.1139/x08-136
  18. Bouzidi, A., Souahi, F. and Hanini, S. (2010) Sorption behavior of cesium on Ain Oussera soil under different physicochemical conditions. Journal of Hazardous Materials, v.184, p.640-646. doi: 10.1016/j.jhazmat.2010.08.084
  19. Bryant, R., Doerr, S. and Helbig, M. (2005) Effect of oxygen deprivation on soil hydrophobicity during heating. International Journal of Wildland Fire, v.14, p.449-455. doi: 10.1071/wf05035
  20. Caon, L., Vallejo, V.R., Ritsema, C.J. and Geissen, V. (2014) Effects of wildfire on soil nutrients in Mediterranean ecosystems. Earth-Science Reviews, v.139, p.47-58. doi: 10.1016/j.earscirev.2014.09.001
  21. Certini, G. (2005) Effects of fire on properties of forest soils: a review. Oecologia, v.143, p.1-10. doi: 10.1007/s00442-004-1788-8
  22. Certini, G., Nocentini, C., Knicker, H., Arfaioli, P. and Rumpel, C. (2011) Wildfire effects on soil organic matter quantity and quality in two fire-prone Mediterranean pine forests. Geoderma, v.167, p.148-155. doi: 10.1016/j.geoderma.2011.09.005
  23. Choung, S., Um, W., Kim, M. and Kim, M.-G. (2013) Uptake mechanism for iodine species to black carbon. Environmental science & technology, v.47, p.10349-10355. doi: 10.1021/es401570a
  24. Dai, J., Zhang, M., Hu, Q., Huang, Y., Wang, R. and Zhu, Y. (2009) Adsorption and desorption of iodine by various Chinese soils: II. Iodide and iodate. Geoderma, v.153, p.130-135. doi: 10.1016/j.geoderma.2009.07.020
  25. de Koning, A. and Comans, R.N. (2004) Reversibility of radiocaesium sorption on illite. Geochimica et cosmochimica acta, v.68, p.2815-2823. doi: 10.1016/j.gca.2003.12.025
  26. DeBano, L.F. (1991) The effect of fire on soil properties. U.S. Department of Agriculture, Forest Service, Intermountain Research Station. p. 151-156.
  27. Dijkstra, J., Durrant, T., San-Miguel-Ayanz, J. and Veraverbeke, S. (2022) Anthropogenic and lightning fire incidence and burned area in Europe. Land, v.11, p.651. doi: 10.3390/land11050651
  28. Dimitriadou, S., Katsanou, K., Charalabopoulos, S. and Lambrakis, N. (2018) Interpretation of the factors defining groundwater quality of the site subjected to the wildfire of 2007 in Ilia prefecture, South-Western Greece. Geosciences, v.8, p.108. doi: 10.3390/geosciences8040108
  29. Doerr, S., Shakesby, R., Blake, W., Chafer, C., Humphreys, G. and Wallbrink, P. (2006) Effects of differing wildfire severities on soil wettability and implications for hydrological response. Journal of Hydrology, v.319, p.295-311. doi: 10.1016/j.jhydrol.2005.06.038
  30. Dumat, C., Cheshire, M., Fraser, A., Shand, C. and Staunton, S. (1997) The effect of removal of soil organic matter and iron on the adsorption of radiocaesium. European Journal of Soil Science, v.48, p.675-683. doi: 10.1111/j.1365-2389.1997.tb00567.x
  31. Ebel, B.A., Moody, J.A. and Martin, D.A. (2012) Hydrologic conditions controlling runoff generation immediately after wildfire. Water Resources Research, v.48. doi: 10.1029/2011wr011470
  32. Eljarrat, E. and Barcelo, D. (2003) Priority lists for persistent organic pollutants and emerging contaminants based on their relative toxic potency in environmental samples. TrAC Trends in Analytical Chemistry, v.22, p.655-665. doi: 10.1016/s0165-9936(03)01001-x
  33. Fernandez-Marcos, M.L. (2022) Potentially Toxic Substances and Associated Risks in Soils Affected by Wildfires: A Review. Toxics, v.10, p.31. doi: 10.3390/toxics10010031
  34. Flannigan, M., Wotton, B., Marshall, G., De Groot, W., Johnston, J., Jurko, N. and Cantin, A. (2016) Fuel moisture sensitivity to temperature and precipitation: climate change implications. Climatic Change, v.134, p.59-71. doi: 10.1007/s10584-015-1521-0
  35. Fukui, M., Fujikawa, Y. and Satta, N. (1996) Factors affecting interaction of radioiodide and iodate species with soil. Journal of Environmental Radioactivity, v.31, p.199-216. doi: 10.1016/0265-931x(95)00039-d
  36. Fuller, A.J., Shaw, S., Ward, M.B., Haigh, S.J., Mosselmans, J.F.W., Peacock, C.L., Stackhouse, S., Dent, A.J., Trivedi, D. and Burke, I.T. (2015) Caesium incorporation and retention in illite interlayers. Applied Clay Science, v.108, p.128-134. doi: 10.1016/j.clay.2015.02.008
  37. Fultz, L.M., Moore-Kucera, J., Dathe, J., Davinic, M., Perry, G., Wester, D., Schwilk, D.W. and Rideout-Hanzak, S. (2016) Forest wildfire and grassland prescribed fire effects on soil biogeochemical processes and microbial communities: Two case studies in the semi-arid Southwest. Applied Soil Ecology, v.99, p.118-128. doi: 10.1016/j.apsoil.2015.10.023
  38. Gaffney, J.S., Marley, N.A. and Clark, S.B. (1996) Humic and fulvic acids and organic colloidal materials in the environment. ACS Symposium Series, v.651, p.2-16. doi: 10.1021/bk-1996-0651.ch001
  39. Galambos, M., Kufcakova, J. and Rajec, P. (2009) Adsorption of cesium on domestic bentonites. Journal of Radioanalytical and Nuclear Chemistry, v.281, p.485-492. doi: 10.1007/s10967-009-0026-6
  40. Ganteaume, A., Camia, A., Jappiot, M., San-Miguel-Ayanz, J., Long-Fournel, M. and Lampin, C. (2013) A review of the main driving factors of forest fire ignition over Europe. Environmental management, v.51, p.651-662. doi: 10.1007/s00267-012-9961-z
  41. Gao, C., He, J., Cong, J., Zhang, S. and Wang, G. (2018) Impact of forest fires generated black carbon deposition fluxes in Great Hinggan Mountains (China). Land degradation & development, v.29, p.2073-2081. doi: 10.1002/ldr.2837
  42. Giannakopoulou, F., Gasparatos, D., Haidouti, C. and Massas, I. (2012) Sorption behavior of cesium in two Greek soils: effects of Cs initial concentration, clay mineralogy, and particle-size fraction. Soil and Sediment Contamination: An International Journal, v.21, p.937-950. doi: 10.1080/15320383.2012.714418
  43. Giannakopoulou, F., Haidouti, C., Chronopoulou, A. and Gasparatos, D. (2007) Sorption behavior of cesium on various soils under different pH levels. Journal of Hazardous Materials, v.149, p.553-556. doi: 10.1016/j.jhazmat.2007.06.109
  44. Gonzalez-Perez, J.A., Gonzalez-Vila, F.J., Almendros, G. and Knicker, H. (2004) The effect of fire on soil organic matter-a review. Environment international, v.30, p.855-870. doi: 10.1016/j.envint.2004.02.003
  45. Guo, F., Su, Z., Tigabu, M., Yang, X., Lin, F., Liang, H. and Wang, G. (2017) Spatial modelling of fire drivers in urban-forest ecosystems in China. Forests, v.8, p.180. doi: 10.3390/f8060180
  46. Hakem, N., Al Mahamid, I., Apps, J. and Moridis, G. (2000) Sorption of cesium and strontium on Hanford soil. Journal of Radioanalytical and Nuclear Chemistry, v.246, p.275-278. doi: 10.1023/a:1006701902891
  47. Halofsky, J.E., Peterson, D.L. and Harvey, B.J. (2020) Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecology, v.16, p.1-26. doi: 10.1186/s42408-019-0062-8
  48. Hamilton, T.F., Martinelli, R.E., Kehl, S.R., Hayes, M.H., Smith, I.J., Peters, S.K., Tamblin, M.W., Schmitt, C.L. and Hawk, D. (2016) A preliminary assessment on the use of biochar as a soil additive for reducing soil-to-plant uptake of cesium isotopes in radioactively contaminated environments. Journal of Radioanalytical and Nuclear Chemistry, v.307, p.2015-2020. doi: 10.1007/s10967-015-4520-8
  49. Hoover, K. and Hanson, L.A. (2023) Wildfire statistics, IF10244, Congressional Research Service, Washington, D.C., U.S.
  50. Hou, X., Hansen, V., Aldahan, A., Possnert, G., Lind, O.C. and Lujaniene, G. (2009) A review on speciation of iodine-129 in the environmental and biological samples. Analytica Chimica Acta, v.632, p.181-196. doi: 10.1016/j.aca.2008.11.013
  51. Hou, X., Povinec, P.P., Zhang, L., Shi, K., Biddulph, D., Chang, C.C., Fan, Y., Golser, R., Hou, Y. and Jeskovsky, M. (2013) Iodine-129 in seawater offshore Fukushima: distribution, inorganic speciation, sources, and budget. Environmental science & technology, v.47, p.3091-3098. doi: 10.1021/es304460k
  52. Hrelja, I., Sestak, I. and Bogunovic, I. (2020) Wildfire impacts on soil physical and chemical properties-a short review of recent studies. Agriculturae Conspectus Scientificus, v.85, p.293-301.
  53. Huang, W., Hu, Y., Chang, Y., Liu, M., Li, Y., Ren, B. and Shi, S. (2018) Effects of fire severity and topography on soil black carbon accumulation in boreal forest of Northeast China. Forests, v.9, p.408. doi: 10.3390/f9070408
  54. Iglesias, T., Cala, V. and Gonzalez, J. (1997) Mineralogical and chemical modifications in soils affected by a forest fire in the Mediterranean area. Science of the Total Environment, v.204, p.89-96. doi: 10.1016/s0048-9697(97)00173-3
  55. IPCC (2023) Summary for Policymakers. In: Climate Change 2023: Synthesis Report, Intergovernmental Panel on Climate Change, Geneva, Switzerland.
  56. Jaffe, D.A., O'Neill, S.M., Larkin, N.K., Holder, A.L., Peterson, D.L., Halofsky, J.E. and Rappold, A.G. (2020) Wildfire and prescribed burning impacts on air quality in the United States. Journal of the Air & Waste Management Association, v.70, p.583-615. doi: 10.1080/10962247.2020.1749731
  57. Jeon, S., Choung, S., Han, W.S., Jang, K.-S., Shin, W. and Hwang, J. (2017) Physicochemical and Adsorptive Properties of Black Carbon for Radioactive Cesium under Various Combustion Conditions and Tree Species. Journal of Korean Society on Water Environment, v.33, p.689-695. [Korean Literature] doi: 10.15681/KSWE.2017.33.6.689
  58. Jones, R., Chambers, J.C., Johnson, D.W., Blank, R.R. and Board, D.I. (2015) Effect of repeated burning on plant and soil carbon and nitrogen in cheatgrass (Bromus tectorum) dominated ecosystems. Plant and Soil, v.386, p.47-64. doi: 10.1007/s11104-014-2242-2
  59. Jovanovic, V.S., Ilic, M., Markovic, M., Mitic, V., Mandic, S.N. and Stojanovic, G. (2011) Wild fire impact on copper, zinc, lead and cadmium distribution in soil and relation with abundance in selected plants of Lamiaceae family from Vidlic Mountain (Serbia). Chemosphere, v.84, p.1584-1591. doi: 10.1016/j.chemosphere.2011.05.048
  60. Kaiser, M., Ellerbrock, R. and Gerke, H. (2008) Cation exchange capacity and composition of soluble soil organic matter fractions. Soil Science Society of America Journal, v.72, p.1278-1285. doi: 10.2136/sssaj2007.0340
  61. Kaplan, D.I., Serne, R.J., Parker, K.E. and Kutnyakov, I.V. (2000) Iodide sorption to subsurface sediments and illitic minerals. Environmental Science & Technology, v.34, p.399-405. doi: 10.1021/es990220g
  62. Khandaker, S., Toyohara, Y., Kamida, S. and Kuba, T. (2018) Adsorptive removal of cesium from aqueous solution using oxidized bamboo charcoal. Water Resources and Industry, v.19, p.35-46. doi: 10.1016/j.wri.2018.01.001
  63. Kim, E.-J., Oh, J.-E. and Chang, Y.-S. (2003) Effects of forest fire on the level and distribution of PCDD/Fs and PAHs in soil. Science of the Total Environment, v.311, p.177-189. doi: 10.1016/s0048-9697(03)00095-0
  64. Kim, S.J., Lim, C.-H., Kim, G.S., Lee, J., Geiger, T., Rahmati, O., Son, Y. and Lee, W.-K. (2019) Multi-temporal analysis of forest fire probability using socio-economic and environmental variables. Remote Sensing, v.11, p.86. doi: 10.3390/rs11010086
  65. Koarashi, J., Atarashi-Andoh, M., Matsunaga, T., Sato, T., Nagao, S. and Nagai, H. (2012) Factors affecting vertical distribution of Fukushima accident-derived radiocesium in soil under different land-use conditions. Science of the Total Environment, v.431, p.392-401. doi: 10.1016/j.scitotenv.2012.05.041
  66. Korea Forest Service (2021) 2020 Basic Forest Statistics, 11-1400000-000069-10, Korea Forest Service. [Korean Literature]
  67. Korea Forest Service (2023) 2022 Statistical yearbook of forest fire, 11-1400000-000424-10, Korea Forest Service. [Korean Literature]
  68. Kutiel, P. and Naveh, Z. (1987) The effect of fire on nutrients in a pine forest soil. Plant and Soil, v.104, p.269-274. doi: 10.1007/bf02372541
  69. Kuzyakov, Y., Bogomolova, I. and Glaser, B. (2014) Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biology and Biochemistry, v.70, p.229-236. doi: 10.1016/j.soilbio.2013.12.021
  70. Lewis, S.A., Robichaud, P.R., Hudak, A.T., Strand, E.K., Eitel, J.U. and Brown, R.E. (2021) Evaluating the Persistence of Post-Wildfire Ash: A Multi-Platform Spatiotemporal Analysis. Fire, v.4, p.68. doi: 10.3390/fire4040068
  71. Li, J., Zhou, H., Wang, Y., Xie, X. and Qian, K. (2017) Sorption and speciation of iodine in groundwater system: The roles of organic matter and organic-mineral complexes. Journal of contaminant hydrology, v.201, p.39-47. doi: 10.1016/j.jconhyd.2017.04.008
  72. Lim, J.H. (2000) Forest Fire and Meteorology of Eastern Korea. Korean Journal of Agricultural and Forest Meteorology, v.2, p.62-67. [Korean Literature]
  73. Litton, C.M. and Santelices, R. (2003) Effect of wildfire on soil physical and chemical properties in a Nothofagus glauca forest, Chile. Revista Chilena de Historia Natural, v.76, p.529-542. doi: 10.4067/s0716-078x2003000400001
  74. Liu, Y., Goodrick, S. and Heilman, W. (2014) Wildland fire emissions, carbon, and climate: Wildfire-climate interactions. Forest Ecology and Management, v.317, p.80-96. doi: 10.1016/j.foreco.2013.02.020
  75. Lopez-Macias, R., Cobos-Gasca, V., Cabanas-Vargas, D. and Rendon von Osten, J. (2019) Presence and spatial distribution of polynuclear aromatic hydrocarbons (PAHs) in groundwater of Merida City, Yucatan, Mexico. Bulletin of environmental contamination and toxicology, v.102, p.538-543. doi: 10.1007/s00128-019-02580-7
  76. Maliszewska-Kordybach, B. (1999) Sources, concentrations, fate and effects of polycyclic aromatic hydrocarbons (PAHs) in the environment. Part A: PAHs in air. Polish journal of environmental studies, v.8, p.131-136.
  77. Mansilha, C., Carvalho, A., Guimaraes, P. and Espinha Marques, J. (2014) Water quality concerns due to forest fires: Polycyclic aromatic hydrocarbons (PAH) contamination of groundwater from mountain areas. Journal of Toxicology and Environmental Health, Part A, v.77, p.806-815. doi: 10.1080/15287394.2014.909301
  78. Mansilha, C., Duarte, C.G., Melo, A., Ribeiro, J., Flores, D. and Marques, J.E. (2019) Impact of wildfire on water quality in Caramulo Mountain ridge (Central Portugal). Sustainable Water Resources Management, v.5, p.319-331. doi: 10.1007/s40899-017-0171-y
  79. Mansilha, C., Melo, A., Martins, Z.E., Ferreira, I.M., Pereira, A.M. and Espinha Marques, J. (2020) Wildfire effects on groundwater quality from springs connected to small public supply systems in a peri-urban forest area (Braga Region, NW Portugal). Water, v.12, p.1146. doi: 10.3390/w12041146
  80. Mansoor, S., Farooq, I., Kachroo, M.M., Mahmoud, A.E.D., Fawzy, M., Popescu, S.M., Alyemeni, M., Sonne, C., Rinklebe, J. and Ahmad, P. (2022) Elevation in wildfire frequencies with respect to the climate change. Journal of Environmental management, v.301, p.113769. doi: 10.1016/j.jenvman.2021.113769
  81. Martinez, J., Vega-Garcia, C. and Chuvieco, E. (2009) Human-caused wildfire risk rating for prevention planning in Spain. Journal of environmental management, v.90, p.1241-1252. doi: 10.1016/j.jenvman.2008.07.005
  82. McClure, C.D. and Jaffe, D.A. (2018) Investigation of high ozone events due to wildfire smoke in an urban area. Atmospheric Environment, v.194, p.146-157. doi: 10.1016/j.atmosenv.2018.09.021
  83. Meneses, B.M., Reis, R., Vale, M.J. and Saraiva, R. (2015) Land use and land cover changes in Zezere watershed (Portugal)-Water quality implications. Science of the Total Environment, v.527, p.439-447. doi: 10.1016/j.scitotenv.2015.04.092
  84. Muller, M.M. and Vacik, H. (2017) Characteristics of lightnings igniting forest fires in Austria. Agricultural and Forest Meteorology, v.240, p.26-34. doi: 10.1016/j.agrformet.2017.03.020
  85. Munoz, C., Paulino, L., Monreal, C. and Zagal, E. (2010) Greenhouse gas (CO2 and N2O) emissions from soils: a review. Chilean journal of agricultural research, v.70, p.485-497. doi: 10.4067/s0718-58392010000300016
  86. Muramatsu, Y., Uchida, S., Sriyotha, P. and Sriyotha, K. (1990) Some considerations on the sorption and desorption phenomena of iodide and iodate on soil. Water, Air, and Soil Pollution, v.49, p.125-138. doi: 10.1007/bf00279516
  87. Murphy, J., Johnson, D., Miller, W., Walker, R., Carroll, E. and Blank, R. (2006) Wildfire effects on soil nutrients and leaching in a Tahoe Basin watershed. Journal of environmental Quality, v.35, p.479-489. doi: 10.2134/jeq2005.0144
  88. Naidu, R., Kookana, R.S., Sumner, M.E., Harter, R.D. and Tiller, K. (1997) Cadmium sorption and transport in variable charge soils: a review. Journal of Environmental Quality, v.26, p.602-617. doi: 10.2134/jeq1997.00472425002600030004x
  89. Nakamaru, Y., Ishikawa, N., Tagami, K. and Uchida, S. (2007) Role of soil organic matter in the mobility of radiocesium in agricultural soils common in Japan. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v.306, p.111-117. doi: 10.1016/j.colsurfa.2007.01.014
  90. Nakao, A., Ogasawara, S., Sano, O., Ito, T. and Yanai, J. (2014) Radiocesium sorption in relation to clay mineralogy of paddy soils in Fukushima, Japan. Science of the total environment, v.468, p.523-529. doi: 10.1016/j.scitotenv.2013.08.062
  91. Neff, J., Harden, J. and Gleixner, G. (2005) Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska. Canadian journal of forest research, v.35, p.2178-2187. doi: 10.1139/x05-154
  92. Neina, D. (2019) The role of soil pH in plant nutrition and soil remediation. Applied and environmental soil science, v.2019, p.1-9. doi: 10.1155/2019/5794869
  93. Park, S.-M., Alessi, D.S. and Baek, K. (2019) Selective adsorption and irreversible fixation behavior of cesium onto 2: 1 layered clay mineral: A mini review. Journal of hazardous materials, v.369, p.569-576. doi: 10.1016/j.jhazmat.2019.02.061
  94. Paton-Walsh, C., Jones, N.B., Wilson, S.R., Haverd, V., Meier, A., Griffith, D.W. and Rinsland, C.P. (2005) Measurements of trace gas emissions from Australian forest fires and correlations with coincident measurements of aerosol optical depth. Journal of Geophysical Research: Atmospheres, v.110. doi: 10.1029/2005jd006202
  95. Pennino, M.J., Leibowitz, S.G., Compton, J.E., Beyene, M.T. and LeDuc, S.D. (2022) Wildfires can increase regulated nitrate, arsenic, and disinfection byproduct violations and concentrations in public drinking water supplies. Science of the Total Environment, v.804, p.149890. doi: 10.1016/j.scitotenv.2021.149890
  96. Pereira, P. and Ubeda, X. (2010) Spatial distribution of heavy metals released from ashes after a wildfire. Journal of Environmental Engineering and Landscape Management, v.18, p.13-22. doi: 10.3846/jeelm.2010.02
  97. Pipiska, M., Ballova, S., Fristak, V., Duriska, L., Hornik, M., Demcak, S., Holub, M. and Soja, G. (2020) Assessment of pyrogenic carbonaceous materials for effective removal of radiocesium. Key Engineering Materials, v.838, p.103-110. doi: 10.4028/www.scientific.net/kem.838.103
  98. Reid, C.E., Brauer, M., Johnston, F.H., Jerrett, M., Balmes, J.R. and Elliott, C.T. (2016) Critical review of health impacts of wildfire smoke exposure. Environmental health perspectives, v.124, p.1334-1343. doi: 10.1289/ehp.1409277
  99. Reid, J., Koppmann, R., Eck, T. and Eleuterio, D. (2005) A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmospheric chemistry and physics, v.5, p.799-825. doi: 10.5194/acp-5-799-2005
  100. Rhoades, C.C., Nunes, J.P., Silins, U. and Doerr, S.H. (2019) The influence of wildfire on water quality and watershed processes: New insights and remaining challenges. International Journal of Wildland Fire, v.28, p.721-725. doi: 10.1071/wfv28n10_fo
  101. San-Miguel-Ayanz, J., Durrant, T., Boca, R., Maianti, P., Liberta, G., Artes-Vivancos, T., Oom, D., Branco, A., de Rigo, D., Ferrari, D., Pfeiffer, H., Grecchi, R., Onida, M. and Loffler, P. (2022) Forest Fires in Europe, Middle East and North Africa 2021, JRC130846, Publications Office of the European Union, Luxembourg.
  102. San-Miguel-Ayanz, J., Moreno, J.M. and Camia, A. (2013) Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives. Forest Ecology and Management, v.294, p.11-22. doi: 10.1016/j.foreco.2012.10.050
  103. Santin, C., Knicker, H., Fernandez, S., Menendez-Duarte, R. and Alvarez, M.A. (2008) Wildfires influence on soil organic matter in an Atlantic mountainous region (NW of Spain). Catena, v.74, p.286-295. doi: 10.1016/j.catena.2008.01.001
  104. Schlegel, M.L., Reiller, P., Mercier-Bion, F., Barre, N. and Moulin, V. (2006) Molecular environment of iodine in naturally iodinated humic substances: Insight from X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta, v.70, p.5536-5551. doi: 10.1016/j.gca.2006.08.026
  105. Schmidt, M.W., Skjemstad, J., Gehrt, E. and Kogel-Knabner, I. (1999) Charred organic carbon in German chernozemic soils. European Journal of Soil Science, v.50, p.351-365. doi: 10.1046/j.1365-2389.1999.00236.x
  106. Shao, H., Wei, Y., Wei, C., Zhang, F. and Li, F. (2021) Insight into cesium immobilization in contaminated soil amended with biochar, incinerated sewage sludge ash and zeolite. Environmental Technology & Innovation, v.23, p.101587. doi: 10.1016/j.eti.2021.101587
  107. Shetaya, W., Young, S., Watts, M., Ander, E. and Bailey, E. (2012) Iodine dynamics in soils. Geochimica et Cosmochimica Acta, v.77, p.457-473. doi: 10.1016/j.gca.2011.10.034
  108. Shi, G., Yan, H., Zhang, W., Dodson, J., Heijnis, H. and Burrows, M. (2021) Rapid warming has resulted in more wildfires in northeastern Australia. Science of the total environment, v.771, p.144888. doi: 10.1016/j.scitotenv.2020.144888
  109. Silva, V., Pereira, J.L., Campos, I., Keizer, J.J., Goncalves, F. and Abrantes, N. (2015) Toxicity assessment of aqueous extracts of ash from forest fires. Catena, v.135, p.401-408. doi: 10.1016/j.catena.2014.06.021
  110. Smith, H.G., Sheridan, G.J., Lane, P.N., Nyman, P. and Haydon, S. (2011) Wildfire effects on water quality in forest catchments: A review with implications for water supply. Journal of Hydrology, v.396, p.170-192. doi: 10.1016/j.jhydrol.2010.10.043
  111. Sojinu, O.S., Sonibare, O.O. and Zeng, E.Y. (2011) Concentrations of polycyclic aromatic hydrocarbons in soils of a mangrove forest affected by forest fire. Toxicological & Environmental Chemistry, v.93, p.450-461. doi: 10.1080/02772248.2010.532130
  112. Steinhauser, G., Brandl, A. and Johnson, T.E. (2014) Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Science of the total environment, v.470, p.800-817. doi: 10.1016/j.scitotenv.2013.10.029
  113. Tameta, Y., Tamura, R., Kimura, M., Sasamoto, M., Kamei-Ishikawa, N. and Ito, A. (2021) Effect of dissolved soil organic matter on cesium adsorption by zeolite and illite. Journal of Environmental Management, v.289, p.112477. doi: 10.1016/j.jenvman.2021.112477
  114. Tariq, A., Shu, H., Siddiqui, S., Munir, I., Sharifi, A., Li, Q. and Lu, L. (2022) Spatio-temporal analysis of forest fire events in the Margalla Hills, Islamabad, Pakistan using socio-economic and environmental variable data with machine learning methods. Journal of Forestry Research, v.33, p.183-194. doi: 10.1007/s11676-021-01354-4
  115. Tournassat, C., Gaucher, E.C., Fattahi, M. and Grambow, B. (2007) On the mobility and potential retention of iodine in the Callovian-Oxfordian formation. Physics and Chemistry of the Earth, Parts A/B/C, v.32, p.539-551. doi: 10.1016/j.pce.2005.12.004
  116. Turco, M., Bedia, J., Di Liberto, F., Fiorucci, P., von Hardenberg, J., Koutsias, N., Llasat, M.-C., Xystrakis, F. and Provenzale, A. (2016) Decreasing fires in mediterranean Europe. PLoS one, v.11, p.e0150663. doi: 10.1371/journal.pone.0150663
  117. Ulery, A.L., Graham, R.C., Goforth, B.R. and Hubbert, K.R. (2017) Fire effects on cation exchange capacity of California forest and woodland soils. Geoderma, v.286, p.125-130. doi: 10.1016/j.geoderma.2016.10.028
  118. Varela, M., Benito, E. and De Blas, E. (2005) Impact of wildfires on surface water repellency in soils of northwest Spain. Hydrological Processes: An International Journal, v.19, p.3649-3657. doi: 10.1002/hyp.5850
  119. Viegas, D.X., Simeoni, A., Xanthopoulos, G., Rossa, C., Ribeiro, L.M., Pita, L.P., Stipanicev, D., Zinoviev, A., Weber, R., Dold, J., Caballero, D. and San-Miguel-Ayanz, J. (2009) Recent forest fire related accidents in Europe, JRC 56107, Publications Office of the European Union, Luxembourg.
  120. Wang, Y. and Anderson, K.R. (2010) An evaluation of spatial and temporal patterns of lightning-and human-caused forest fires in Alberta, Canada, 1980-2007. International Journal of Wildland Fire, v.19, p.1059-1072. doi: 10.1071/wf09085
  121. Wang, Y., Xu, Z. and Zhou, Q. (2014) Impact of fire on soil gross nitrogen transformations in forest ecosystems. Journal of Soils and Sediments, v.14, p.1030-1040. doi: 10.1007/s11368-014-0879-3
  122. Williams, A.P., Abatzoglou, J.T., Gershunov, A., Guzman-Morales, J., Bishop, D.A., Balch, J.K. and Lettenmaier, D.P. (2019) Observed impacts of anthropogenic climate change on wildfire in California. Earth's Future, v.7, p.892-910. doi: 10.1029/2019ef001210
  123. WMO (2020) State of the Global Climate 2019, WMO-No. 1248, World Meteorological Organization, Geneva, Switzerland.
  124. WMO (2022) State of the Global Climate 2021, WMO-No. 1290, World Meteorological Organization, Geneva, Switzerland.
  125. WMO (2023) State of the Global Climate 2022, WMO-No. 1316, World Meteorological Organization, Geneva, Switzerland.
  126. Woods, S.W. and Balfour, V.N. (2010) The effects of soil texture and ash thickness on the post-fire hydrological response from ash-covered soils. Journal of Hydrology, v.393, p.274-286. doi: 10.1016/j.jhydrol.2010.08.025
  127. Wotawa, G. and Trainer, M. (2000) The influence of Canadian forest fires on pollutant concentrations in the United States. Science, v.288, p.324-328. doi: 10.1126/science.288.5464.324
  128. Xu, C., Miller, E.J., Zhang, S., Li, H.-P., Ho, Y.-F., Schwehr, K.A., Kaplan, D.I., Otosaka, S., Roberts, K.A. and Brinkmeyer, R. (2011) Sequestration and remobilization of radioiodine (129I) by soil organic matter and possible consequences of the remedial action at Savannah River Site. Environmental science & technology, v.45, p.9975-9983. doi: 10.1021/es201343d
  129. Xu, R., Zhao, A. and Ji, G. (2003) Effect of low-molecular-weight organic anions on surface charge of variable charge soils. Journal of Colloid and Interface Science, v.264, p.322-326. doi: 10.1016/s0021-9797(03)00475-2
  130. Xu, S., Freeman, S.P., Hou, X., Watanabe, A., Yamaguchi, K. and Zhang, L. (2013) Iodine isotopes in precipitation: temporal responses to 129I emissions from the Fukushima nuclear accident. Environmental science & technology, v.47, p.10851-10859. doi: 10.1021/es401527q
  131. Yamagishi, T., Nishikiori, K., Kurimoto, Y. and Yamauchi, S. (2019) Cesium-adsorption mechanisms of woody charcoal discussed on the basis of its functional groups and nanostructure. Journal of wood science, v.65, p.1-9. doi: 10.1186/s10086-019-1805-5
  132. Yoschenko, V., Ohkubo, T. and Kashparov, V. (2018) Radioactive contaminated forests in Fukushima and Chernobyl. Journal of Forest Research, v.23, p.3-14. doi: 10.1080/13416979.2017.1356681
  133. Zavala, L.M.M., de Celis Silvia, R. and Lopez, A.J. (2014) How wildfires affect soil properties. A brief review. Cuadernos de investigacion geografica: Geographical Research Letters, p.311-331. doi: 10.18172/cig.2522
  134. Zhang, D., Lu, L., Lu, T., Jin, M., Lin, J., Liu, X. and Zhao, H. (2018) Application of a rice husk-derived biochar in soil immobilization of iodide (I-) and iodate (IO 3-). Journal of soils and sediments, v.18, p.1540-1547. doi: 10.1007/s11368-017-1864-4
  135. Zhang, X., Wang, H., He, L., Lu, K., Sarmah, A., Li, J., Bolan, N.S., Pei, J. and Huang, H. (2013) Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research, v.20, p.8472-8483. doi: 10.1007/s11356-013-1659-0