DOI QR코드

DOI QR Code

홀뮴 도핑된 TiO2를 이용한 광전기화학 수소 제조

Photoelectrochemical Hydrogen Production with Holmium-doped TiO2

  • 정현민 (한국에너지기술연구원 수소에너지연구소 수소연구단) ;
  • 김민서 (한국에너지기술연구원 수소에너지연구소 수소연구단) ;
  • 조혜경 (한국에너지기술연구원 수소에너지연구소 수소연구단) ;
  • 주현규 (한국에너지기술연구원 수소에너지연구소 수소연구단) ;
  • 강경수 (한국에너지기술연구원 수소에너지연구소 수소연구단) ;
  • 이광복 (충남대학교 에너지과학기술대학원) ;
  • 김한성 (연세대학교 화공생명공학과) ;
  • 윤재경 (한국에너지기술연구원 수소에너지연구소 수소연구단)
  • HYEONMIN JUNG (Hydrogen Research Department, Hydrogen Energy Institute, Korea Institute of Energy Research) ;
  • MINSEO KIM (Hydrogen Research Department, Hydrogen Energy Institute, Korea Institute of Energy Research) ;
  • HYEKYUNG CHO (Hydrogen Research Department, Hydrogen Energy Institute, Korea Institute of Energy Research) ;
  • HYUNKU JOO (Hydrogen Research Department, Hydrogen Energy Institute, Korea Institute of Energy Research) ;
  • KYOUNGSOO KANG (Hydrogen Research Department, Hydrogen Energy Institute, Korea Institute of Energy Research) ;
  • KWANGBOK YI (Chungnam National University Graduate School of Energy Science and Technology) ;
  • HANSUNG KIM (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • JAEKYUNG YOON (Hydrogen Research Department, Hydrogen Energy Institute, Korea Institute of Energy Research)
  • 투고 : 2023.09.15
  • 심사 : 2023.10.16
  • 발행 : 2023.10.30

초록

Holmium-doped TiO2 nanotubes (Ho-TNTs) were manufactured through anodization treatment and electrochemical deposition, and optimization experiments were conducted using various Holmium doping concentrations and time as variables. Surface as well as electrochemical characteristics were analyzed to study the prepared photocatalysts. Ho-TNTs were found to exist only in anatase phase through X-ray diffraction analysis. Ho-TNTs with 0.01 wt% 100 seconds shows a photocurrent density of 3.788 mA/cm2 and an effective photo-conversion efficiency (PCE) of 4.30%, which is more efficient than pure TiO2 nanotubes (pure-TNTs) (at bias potential 1.5 V vs. Hg/HgO). The photocatalytic activity of the aforementioned Ho-TNTs for hydrogen production was evaluated with the result of -29.20 µmol/h·cm2.

키워드

과제정보

본 연구는 국토교통부/국토교통과학기술진흥원의 지원을 받아 수행되었으며 이에 감사드립니다(과제번호 RS-2021-KA163280).

참고문헌

  1. H. Cho, H. Joo, H. Kim, J. E. Kim, K. S. Kang, and J. Yoon. "Enhanced photocatalytic activity of TiO2 nanotubes decorated with erbium and reduced graphene oxide", Applied Surface Science, Vol. 565, 2021, pp. 150459, doi: https://doi.org/10.1016/j.apsusc.2021.150459.
  2. H. Cho, H. Joo, H. Kim, J. E. Kim, K. S. Kang, H. Jung, and J. Yoon, "Enhanced photoelectrochemical activity of TiO2 nanotubes decorated with lanthanide ions for hydrogen production", Catalysts, Vol. 12, No. 8, 2022, pp. 866, doi: https://doi.org/10.3390/catal12080866.
  3. A. Z. Khan, T. A. Kandiel, S. Abdel-Azeim, T. N. Jahangir, and K. Alhooshani, "Phosphate ions interfacial drift layer to improve the performance of CoFe-Prussian blue hematite photoanode toward water splitting", Applied Catalysis B: Environmental, Vol. 304, 2022, pp. 121014, doi: https://doi.org/10.1016/j.apcatb.2021.121014.
  4. H. Cho, H. Jung, J. Yoon, K. Yi, H. Kim, and H. Joo, "Hydrog-enase enzyme for photoelectrochemical hydrogen producti-on from water splitting", Journal of Hydrogen and New Energy, Vol. 33, No. 5, 2022, pp. 507-514, doi: https://doi.org/10.7316/KHNES.2022.33.5.507.
  5. H. Cho, H. Joo, H. Kim, J. E. Kim, K. S. Kang, and J. Yoon, "Improved photoelectrochemical properties of TiO2 nanotubes doped with Er and effects on hydrogen production from water splitting", Chemosphere, Vol. 267, 2021, pp. 129289, doi: https://doi.org/10.1016/j.chemosphere.2020.129289.
  6. A. Fujishima, X. Zhang, and D. A. Tryk, "TiO2 photocatalysis and related surface phenomena", Surface Science Reports, Vol. 63, No. 12, 2008, pp. 515-582, doi: https://doi.org/10.1016/j.surfrep.2008.10.001.
  7. K. R. Reddy, M. Hassan, and V. G. Gomes, "Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis", Applied Catalysis A: General, Vol. 489, 2015, pp. 1-16, doi: https://doi.org/10.1016/j.apcata.2014.10.001.
  8. J. He, A. Kumar, M. Khan, and I. M. C. Lo, "Critical review of photocatalytic disinfection of bacteria: from noble metals-and carbon nanomaterials-TiO2 composites to challenges of water characteristics and strategic solutions", Science of The Total Environment, Vol. 758, 2021, pp. 143953, doi: https://doi.org/10.1016/j.scitotenv.2020.143953.
  9. M. Wang, J. Ioccozia, L. Sun, C. Lin, and Z. Lin, "Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis", Energy & Environmental Science, Vol. 7, 2014, pp. 2 182-2202, doi: https://doi.org/10.1039/C4EE00147H.
  10. J. Zhang, K. Tse, M. Wong, Y. Zhang, and J. Zhu, "A brief review of co-doping", Frontiers of Physics, Vol. 11, 2016, pp. 117405, doi: https://doi.org/10.1007/s11467-016-0577-2.
  11. P. Mazierski, W. Lisowski, T. Grzyb, M. J. Winiarski, T. Klimczuk, A. Mikolajczyk, J. Flisikowski, A. Hirsch, A. Kolakowska, T. Puzyn, A. Zaleska-Medynska, and J. Nadolna, "Enhanced photocatalytic properties of lanthanide-TiO2 nanotubes: an experimental and theoretical study", Applied Catalysis B: Environmental, Vol. 205, 2017, pp. 376-385, doi: https://doi.org/10.1016/j.apcatb.2016.12.044.
  12. R. Khoshnavazi, H. Sohrabi, L. Bahrami, and M. Amiri, "Photocatalytic activity inhancement of TiO2 nanoparticles with lanthanide ions and sandwich-type polyoxometalates", Journal of Sol-Gel Science and Technology, Vol. 83, 2017, pp. 332-341, doi: https://doi.org/10.1007/s10971-017-4422-z.
  13. D. Y. Lee, J. T. Kim, J. H. Park, Y. H. Kim, I. K. Lee, M. H. Lee, and B. Y. Kim, "Effect of Er doping on optical band gap energy of TiO2 thin films prepared by spin coating", Current Applied Physics, Vol. 13, No. 7, 2013, pp. 1301-1305, doi: https://doi.org/10.1016/j.cap.2013.03.025.
  14. J. Reszczynska, T. Grzyb, J. W. Sobczak, W. Lisowski, M. Gazda, B. Ohtani, and A. Zaleska, "Lanthanide co-doped TiO2: the effect of metal type and amount on surface properties and photocatalytic activity", Applied Surface Science, Vol. 307, 2014, pp. 333-345, doi: https://doi.org/10.1016/j.apsusc.2014.03.199.
  15. W. Zhou and Y. He, "Ho/TiO2 nanowires heterogeneous catalyst with enhanced photocatalytic properties by hydrother-mal synthesis method", Chemical Engineering Journal, Vol. 179, 2012, pp. 412-416, doi: https://doi.org/10.1016/j.cej.2011.10.094.
  16. G. Xu, Z. Xu, Z. Shi, L. Pei, S. Yan, Z. Gu, and Z. Zou, "Silicon photoanodes partially covered by Ni@Ni(OH)2 core-shell particles for photoelectrochemical water oxidation", ChemSus-Chem, Vol. 10, No. 14, 2017, pp. 2897-2903, doi: https://doi.org/10.1002/cssc.201700825.
  17. H. Zhang, M. Ebaid, J. W. Min, T. K. Ng, and B. S. Ooi, "Enhanced photoelectrochemical performance of InGaN-based nanowire photoanodes by optimizing the ionized dopant concentration", Journal of Applied Physics, Vol. 124, No. 8, 2018, pp. 083105, doi: https://doi.org/10.1063/1.5031067.
  18. L. F. Marchesi, R. G. Freitas, E. R. Spada, F. R. Paula, M. S. Goes, and J. R. Garcia, "Photoelectrochemical characterization of ITO/TiO2 electrodes obtained by cathodic electrodeposition from aqueous solution", Journal of Solid State Electrochemistry, Vol. 19, 2015, pp. 2205-2211, doi: https://doi.org/10.1007/s10008-015-2848-1.
  19. N. A. A. Samad, C. W. Lai, K. S. Lau, and S. B. A. Hamid, "Efficient solar-induced photoelectrochemical response using coupling semiconductor TiO2-ZnO nanorod film", Materials, Vol. 9, No. 11, 2016, pp. 937, doi: https://doi.org/10.3390/ma9110937.