과제정보
The research described in this paper was financially supported by the National Nature Science Foundation of China [Grant No.52274120].
참고문헌
- ASTM Standard D3148-02 (2002), Standard Test Method for Elastic Moduli of Intact Rock Core Specimens in Uniaxial Compression, American Society for Testing and Materials,West Conshohocken, PA, USA.
- ASTM Standard D3967-16 (2016), Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens, American Society for Testing and Materials, West Conshohocken, PA, USA.
- ASTM standard D5731-16 (2016), Standard Test Method for Determination of the Point Load Strength Index of Rock and Application to Rock Strength Classifications, American Society for Testing and Materials, West Conshohocken, PA, USA.
- Basu, A., Mishra, D.A. and Roychowdhury, K. (2013), "Rock failure modes under uniaxial compression, Brazilian, and point load tests", Bull. Eng. Geol. Environ., 72, 457-475. https://doi.org/10.1007/s10064-013-0505-4.
- Bieniawski, Z.T. (1975), "The point-load test in geotechnical practice", Eng. Geol., 9(1), 1-11. https://doi.org/10.1016/0013-7952(75)90024-1.
- Broch, E. and Franklin, J.A. (1972), "The point-load strength test", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 9(6), 669-676. https://doi.org/10.1016/0148-9062(72)90030-7.
- Churcher, P.L., French, P.R., Shaw, J.C. and Schramm, L.L. (1991), "Rock properties of Berea sandstone, Baker dolomite, and Indiana limestone", The SPE International Conference on Oilfield Chemistry, Anaheim, CA, USA, February.
- Everall, T.J. and Sanislav, I.V. (2018), "The influence of preexisting deformation and alteration textures on rock strength, failure modes and shear strength parameters", Geosci., 8(4), 124. https://doi.org/10.3390/geosciences8040124.
- Franklin, J.A. (1985), "Suggested method for determining point load strength", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 22(2), 51-60. https://doi.org/10.1016/0148-9062(85)92327-7.
- Frocht, M.M. (1974), Photoelasticity, Wiley, Hoboken, NJ, USA.
- Heidari, M., Khanlari, G.R., Torabi Kaveh, M. and Kargarian, S. (2012), "Predicting the uniaxial compressive and tensile strengths of gypsum rock by point load testing", Rock Mech. Rock Eng., 45, 265-273. https://doi.org/10.1007/s00603-011-0196-8.
- Hoek, E. (1977), "Rock mechanics laboratory testing in the context of a consulting engineering organization", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 14(2), 93-101. https://doi.org/10.1016/0148-9062(77)90201-7.
- Itasca Consulting Group, Inc. (2019), PFC|US Minneapolis - Itasca Consulting Group, Inc, Itasca Consulting Group, Inc., Minneapolis, MN, USA. https://www.itascacg.com/software/PFC
- Jaeger, J.C., Cook, N.G. and Zimmerman, R. (2009), Fundamentals of Rock Mechanics, Wiley, Hoboken, NJ, USA.
- Kabilan, N., Muttharam, M. and Elamathi, V. (2017), "Prediction of unconfined compressive strength for jointed rocks using point load index based on joint asperity angle", Geotech. Geol. Eng., 35, 2625-2636. https://doi.org/10.1007/s10706-017-0266-0.
- Kaya, A. and Karaman, K. (2016), "Utilizing the strength conversion factor in the estimation of uniaxial compressive strength from the point load index", Bull. Eng. Geol. Environ., 75, 341-357. https://doi.org/10.1007/s10064-015-0721-1.
- Koyama, T. and Jing, L. (2007), "Effects of model scale and particle size on micro-mechanical properties and failure processes of rocks-a particle mechanics approach", Eng. Anal. Bound. Elem., 31(5), 458-472. https://doi.org/10.1016/j.enganabound.2006.11.009.
- Lutton, RJ. (1970), "Tensile fracture mechanics from fracture surface morphology", The 12th U.S. Symposium on Rock Mechanics, Rolla, MO, USA, November.
- Lutton, R.J. (2006), "Fracture surface morphology", Structural Geology and Tectonics, Encyclopedia of Earth Science Springer, Berlin, Heidelberg.
- Hossein, M., Paul, C.H. and Serkan, S. (2015), "A modification to radial strain calculation in rock testing", Geotech. Test. J., 38(6), 813-822. https://doi.org/10.1520/GTJ20140238.
- Peng, S.S. (1976), "Stress analysis of cylindrical rock discs subjected to axial double point load", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 13(3), 97-101. https://doi.org/10.1016/0148-9062(76)90426-5.
- Potyondy, D.O. (2017), "Simulating perforation damage with a flat-jointed bonded-particle material", The 51st U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, June.
- Potyondy, D.O. (2018), "A flat-jointed bonded-particle model for rock", The 52nd U.S. Rock Mechanics/Geomechanics Symposium, Seattle, WA, USA, June.
- Russell, A.R. and Wood, D.M. (2009), "Point load tests and strength measurements for brittle spheres", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 46(2), 272-280. https://doi.org/10.1016/j.ijrmms.2008.04.004.
- Sahin, M., Ulusay, R. and Karakul, H. (2020), "Point load strength index of half-cut core specimens and correlation with uniaxial compressive strength", Rock Mech. Rock Eng., 53, 3745-3760. https://doi.org/10.1007/s00603-020-02137-9.
- Sarici, D.E. and Ozdemir, E. (2018), "Determining point load strength loss from porosity, Schmidt hardness, and weight of some sedimentary rocks under freeze-thaw conditions", Environ. Earth Sci., 77, 1-9. https://doi.org/10.1007/s12665-018-7241-9.
- Serati, M., Masoumi, H., Williams, D.J., Alehossein, H. and Roshan, H. (2018), "Some new aspects on the diametral point load testing", The 52nd U.S. Rock Mechanics/Geomechanics Symposium, Seattle, WA, USA, June.
- Shi, Q. and Mishra, B. (2021), "Discrete element modeling of delamination in laboratory scale laminated rock", Min. Metall. Explor., 38(1), 433-446. https://doi.org/10.1007/s42461-020-00302-w.
- Shi, Q., Mishra, B. and Zhao, Y. (2022), "DEM analysis of the effect of lamination properties on the stability of an underground coal mine entry with laminated shale roof", Min. Metall. Explor., 39(2), 495-506. https://doi.org/10.1007/s42461-022-00541-z.
- Sternberg, E. and Rosenthal, F. (1952), "The elastic sphere under concentrated loads", J. Appl. Mech., 19(4), 413-421. https://doi.org/10.1115/1.4010536.
- Timoshenko, S. (1951), Theory of Elasticity, McGraw-Hill Book Co., Inc., New York City, NY, UAS.
- Wang, Y., Tang, J., Dai, Z. and Yi, T. (2018), "Experimental study on mechanical properties and failure modes of low-strength rock samples containing different fissures under uniaxial compression", Eng. Fract. Mech., 197, 1-20. https://doi.org/10.1016/j.engfracmech.2018.04.044.
- Wei, X.X., Chau, K.T. and Wong, R.H.C. (2019), "Theoretical and experimental validation of point load strength test for irregular lumps", J. Eng. Mech., 145(9), 04019065. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001638.
- Wen, L., Luo, Z.Q., Yang, S.J., Qin, Y.G., Ma, S.W. and Jiang, H. (2019), "A new method for evaluating the rock mass damage index based on the field point load strength", Royal Soc. Open Sci., 6(3), 181591. https://doi.org/10.1098/rsos.181591.
- Wong, R.H., Chau, K.T., Yin, J.H., Lai, D.T. and Zhao, G.S. (2017), "Uniaxial compressive strength and point load index of volcanic irregular lumps", Int. J. Rock Mech. Min. Sci., 93, 307-315. https://doi.org/10.1016/j.ijrmms.2017.02.010.
- Xie, H., Wang, J.A. and Kwasniewski, M.A. (1999), "Multifractal characterization of rock fracture surfaces", Int. J. Rock Mech. Min. Sci., 36(1), 19-27. https://doi.org/10.1016/S0148-9062(98)00172-7.
- Xue, Y., Gao, D. and Mishra, B. (2018), "Stochastic simulation of rock size effect with correlation length", The 52nd U.S. Rock Mechanics/Geomechanics Symposium, Seattle, WA, USA, June.
- Yin, J.H., Wong, R.H., Chau, K.T., Lai, D.T. and Zhao, G.S. (2017), "Point load strength index of granitic irregular lumps: Size correction and correlation with uniaxial compressive strength", Tunn. Undergr. Space Technol., 70, 388-399. https://doi.org/10.1016/j.tust.2017.09.011.
- Yoon, J. (2007), "Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation", Int. J. Rock Mech. Min. Sci., 44(6), 871-889. https://doi.org/10.1016/j.ijrmms.2007.01.004.
- Zhang, X.P., Wu, S., Afolagboye, L.O., Wang, S. and Han, G. (2016), "Using the point load test to analyze the strength anisotropy of quartz mica schist along an exploration adit", Rock Mech. Rock Eng., 49, 1967-1975. https://doi.org/10.1007/s00603-015-0792-0.
- Zhang, Y., Shao, Z., Wei, W. and Qiao, R. (2019), "PFC simulation of crack evolution and energy conversion during basalt failure process", J. Geophys. Eng., 16(3), 639-651. https://doi.org/10.1093/jge/gxz036.