DOI QR코드

DOI QR Code

The surface stress effects on the buckling analysis of porous microcomposite annular sandwich plate based on HSDT using Ritz method

  • Mohsen Emdadi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Mehdi Mohammadimehr (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Borhan Rousta Navi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
  • 투고 : 2020.03.04
  • 심사 : 2022.07.23
  • 발행 : 2023.11.25

초록

In this article, the surface stress effects on the buckling analysis of the annular sandwich plate is developed. The proposed plate is composed of two face layers made of carbon nanotubes (CNT) reinforced composite with assuming of fully bonded to functionally graded porous core. The generalized rule of the mixture is employed to predict the mechanical properties of the microcomposite sandwich plate. The derived potentials energy based on higher order shear deformation theory (HSDT) and modified couple stress theory (MCST) is solved by employing the Ritz method. An exact analytical solution is presented to calculate the critical buckling loads of the annular sandwich plate. The predicted results are validated by carrying out the comparison studies for the buckling analysis of annular plates with those obtained by other analytical and finite element methods. The effects of various parameters such as material length scale parameter, core thickness to total thickness ratio (hc/h), surface elastic constants based on surface stress effect, various boundary condition and porosity distributions, size of the internal pores (e0), Skempton coefficient and elastic foundation on the critical buckling load have been studied. The results can be served as benchmark data for future works and also in the design of materials science, injunction high-pressure micropipe connections, nanotechnology, and smart systems.

키워드

과제정보

The authors would like to thank the reviewers for their valuable comments and suggestions to improve the clarity of this work, and also they are thankful to the Iranian Nanotechnology Development Committee for their financial support and the University of Kashan for supporting this work by Grant No. 682561/25.

참고문헌

  1. Amadio, C. and Bedon, C. (2011), "Buckling of laminated glass elements in compression", J. Struct. Eng., 137(8), 803-810. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000328.
  2. Ananthi, G.B.G., Roy, K. and Lim, J.B. (2019), "Experimental and numerical investigations on axial strength of back-to-back built-up cold-formed steel angle columns", Steel Compos. Struct., 31(6), 601-615. https://doi.org/10.12989/scs.2019.31.6.601.
  3. Ansari, R., Gholami, R., Faghih Shojaei, M., Mohammadi, V. and Sahmani, S. (2015), "Bending, buckling and free vibration analysis of size-dependent functionally graded circular/annular microplates based on the modified strain gradient elasticity theory", Eur. J. Mech./A. Solid., 49, 251-267. https://doi.org/10.1016/j.euromechsol.2014.07.014.
  4. Aria, A.I. and Friswell, M.I. (2019), "Computational hygrothermal vibration and buckling analysis of functionally graded sandwich microbeams", Compos. Part B: Eng., 165, 785-797. https://doi.org/10.1016/j.compositesb.2019.02.028.
  5. Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579.
  6. Batra, R.C. and Hassan, N.M. (2007), "Response of fiber reinforced composites to underwater explosive loads", Compos. Part. B, 38, 448-468. https://doi.org/10.1016/j.compositesb.2006.09.001.
  7. Biot, M.A. (1964), "Theory of buckling of a porous slab and its thermoelastic analogy", J. Appl. Mech., 31, 194-198. https://doi.org/10.1115/1.3629586.
  8. Buannic, N., Cartraud, P. and Quesnel, T. (2003), "Homogenization of corrugated core sandwich panels", Compos. Struct., 59, 299-312. https://doi.org/10.1016/S0263-8223(02)00246-5.
  9. Chen, D., Sritawat, K. and Jie, Y. (2016), "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin Wall. Struct., 107, 39-48. https://doi.org/10.1016/j.tws.2016.05.025.
  10. Chen, D., Yangm, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052.
  11. Cheng, B. and Li, C.H. (2012), "Buckling behavior of strengthened perforated plates under shear loading", Steel Compos. Struct., 13(4), 367-382. https://doi.org/10.12989/scs.2012.13.4.367.
  12. Deng, E.F., Zong, L. and Ding, Y. (2019), "Numerical and analytical study on initial stiffness of corrugated steel plate shear walls in modular construction", Steel Compos. Struct., 32(3), 347-359. https://doi.org/10.12989/scs.2019.32.3.347.
  13. Dharmasena, K.P., Wadley, H.N.G., Xue, Z. and Hutchinson, J.W. (2008), "Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading", Int. J. Impact Eng., 35, 1063-1074. https://doi.org/10.1016/j.ijimpeng.2007.06.008.
  14. Do, V.N.V. and Lee, C.H. (2017), "Thermal buckling analyses of FGM sandwich plates using the improved radial point interpolation mesh-free method", Compos. Struct., 177, 171-186. https://doi.org/10.1016/j.compstruct.2017.06.054.
  15. Es'haghi, M. (2014), "Accurate approach implementation in vibration analysis of thick sector plates", Int. J. Mech. Sci., 79, 1-14. http://doi.org/10.1016/j.ijmecsci.2013.11.007.
  16. Ghorbanpour Arani, A. and Zamani, M.H. (2018), "nonlocal free vibration analysis of FG-porous shear and normal deformable sandwich nanoplate with piezoelectric face sheets resting on silica aerogel foundation", Arab. J. Sci. Eng., 43, 4675-4688. https://doi.org/10.1007/s13369-017-3035-8.
  17. Ghorbanpour Arani, A., Babaakbar Zarei, H. and Pourmousa, P. (2019), "Free vibration response of FG porous sandwich micro-beam with flexoelectric face-sheets resting on modified Silica Aerogel foundation", Int. J. Appl. Mech., 11(09), 1950087. https://doi.org/10.1142/S175882511950087X.
  18. Ghorbanpour Arani, A., Khoddami, Z, Khani, M. and Alinaghian, I. (2017), "Free vibration of embedded porous plate using third-order shear deformation and poroelasticity theories", J. Eng., 2017, 1. https://doi.org/10.1155/2017/1474916.
  19. Ghorbanpour Arani, A., Khoddami, Z. and Khani, M. (2017), "Dynamic analysis of a rectangular porous plate resting on an elastic foundation using high-order shear deformation theory", J. Vib. Control, 24(16), 1-16. https://doi.org/10.1177/1077546317709388.
  20. Golpasand, G.B., Farzam, M. and Shishvan, S.S. (2020), "FEM investigation of SFRCs using a substepping integration of constitutive equations", Comput. Concrete, 25(2), 181-192. https://doi.org/10.12989/cac.2020.25.2.181.
  21. Hohe, J. and Becker, W. (2001), "An energetic homogenization procedure for the elastic properties of general cellular sandwich cores", Compos. Part. B, 32, 185-197. https://doi.org/10.1016/S1359-8368(00)00055-X.
  22. Jia, J., Zhao, J., Xu, G., Di, J., Yong, Z., Tao, Y., Fang, C., Zhang, Z., Zhang, X., Zheng, L. and Li, Q.A. (2011), "Comparison of the mechanical properties of fibers spun from different carbon nanotubes", Carbon, 49, 1333-1339. https://doi.org/10.1016/j.carbon.2010.11.054.
  23. Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xue, J., Li, Y.D., Wang, J.X. and Yu, D.P. (2006), "Surface effects on elastic properties of silver nano wires: Contact atomic-force microscopy", Phys. Rev. B, 73, 1-6. https://doi.org/10.1103/PhysRevB.73.235409.
  24. Ke, L.L., Yang, J., Kitipornchai, S. and Bradford, M.A. (2012), "Bending, buckling and vibration of size dependent functionally graded annular microplates", Compos. Struct., 94, 3250-3257. https://doi.org/10.1016/j.compstruct.2012.04.037.
  25. Kolahdouzan, F., Ghorbanpour Arani, A. and Abdollahian, M. (2018), "Buckling and free vibration analysis of FG-CNTRC-micro sandwich plate", Steel Compos. Struct., 26(3), 273-287. https://doi.org/10.12989/scs.2018.26.3.273.
  26. Kumar, R., Dey, T. and Panda, S.K. (2019), "Instability and vibration analyses of FG cylindrical panels under parabolic axial compressions", Steel Compos. Struct., 31(2), 187-199. https://doi.org/10.12989/scs.2019.31.2.187.
  27. Lam, D.C.C., Yang, F. and Chong, A.C.M. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solid., 51, 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
  28. Laura, P.A.A., Gutierrez, R.H., Sonzogni, V. and Idelsohn, S. (1997), "Buckling of circular, annular plates of non-uniform thickness", Ocean. Eng., 24(1), 51-61. https://doi.org/10.1016/0029-8018(96)83605-5.
  29. Lim, O.K., Choi, S., Kang, S., Kwon, M. and Choi, J.Y. (2019), "Experimental studies on the behaviour of headed shear studs for composite beams in fire", Steel Compos. Struct., 32(6), 743-752. https://doi.org/10.12989/scs.2019.32.6.743.
  30. Liu, B. and Bai, G.L. (2019), "Finite element modeling of bond-slip performance of section steel reinforced concrete", Comput. Concrete, 24(3), 237-247. https://doi.org/10.12989/cac.2019.24.3.237.
  31. Magnucki, K. and Stasiewicz, P. (2004), "Elastic buckling of a porous beam", J. Theor. Appl. Mech., 42(4), 859-868.
  32. Mohammadimehr, M., Shahedi, S. and Rousta Navi, B. (2016), "Nonlinear vibration analysis of FG-CNTRC sandwich Timoshenko beam based on modified couple stress theory subjected to longitudinal magnetic field using generalized differential quadrature method", Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., 231(20), 3866-3885. https://doi.org/10.1177/0954406216653622.
  33. Mohammadzadeh, B., Choi, E. and Kim, D. (2019), "Vibration of sandwich plates considering elastic foundation, temperature change and FGM faces", Struct. Eng. Mech., 70(5), 591-600. https://doi.org/10.12989/sem.2019.70.5.591.
  34. Mojahedin, A., Jabbari, M., Khorshidvand, A.R. and Eslami, M.R. (2016), "Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory", Thin Wall. Struct., 99, 83-90. https://doi.org/10.1016/j.tws.2015.11.008.
  35. Mousavi, M., Mohammadimehr, M. and Rostami, R. (2019), "Analytical solution for buckling analysis of micro sandwich hollow circular plate", Comput. Concrete, 24(3), 185-192. https://doi.org/10.12989/cac.2019.24.3.185
  36. Natarajan, S., Haboussi, M. and Ganapathi, M. (2014), "Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite facesheets", Compos. Struct., 113, 197-207. https://doi.org/10.1016/j.compstruct.2014.03.007.
  37. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C. and Jorge, R.M.N. (2013), "Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique", Compos. Part B: Eng., 44, 657-674. https://doi.org/10.1016/j.compositesb.2012.01.089.
  38. Nguyen, T.K., Thai, T. and Vo, T. (2015), "A refined higher-order shear deformation theory for bending, vibration and buckling analysis of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 91-120. https://doi.org/10.12989/scs.2015.18.1.091.
  39. Ohga, M., Sanjeewa, A.W. and James, G.A.C. (2005), "Buckling of sandwich cylindrical shells under axial loading", Steel Compos. Struct., 5(1), 1-15. https://doi.org/10.12989/scs.2005.5.1.001.
  40. Ozakca, M., Tays, N. and Kolcu, I.F. (2003), "Buckling analysis and shape optimization of elastic variable thickness circular and annular plates I. Finite element formulation", Eng. Struct., 25, 181-192. https://doi.org/10.1016/S0141-0296(02)00133-5.
  41. Phung, V.P., Thai, C.H., Nguyen, X.H. and Abdel, W.M. (2019), "Porosity-dependent nonlinear transient responses of functionally graded nanoplates using isogeometric analysis", Compos. Part B: Eng., 164, 215-225. https://doi.org/10.1016/j.compositesb.2018.11.036.
  42. Qiu, X., Deshpande, V.S. and Fleck, N.A. (2005), "Impulsive loading of clamped monolithic and sandwich beams over a central patch", J. Mech. Phys. Solid., 53, 1015-1046. https://doi.org/10.1016/j.jmps.2004.12.004.
  43. Ruocco, E. and Reddy, J.N. (2019), "A closed-form solution for buckling analysis of orthotropic Reddy plates and prismatic plate structures", Compos. Part B: Eng., 169, 258-273. https://doi.org/10.1016/j.compositesb.2019.03.015.
  44. Shaat, M., Mahmoud, F.F., Gao, X.L. and Faheem, A.F. (2014), "Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects", Int. J. Mech. Sci., 79, 31-37. https://doi.org/10.1016/j.ijmecsci.2013.11.022.
  45. Shenoy, V.B. (2005), "Atomistic calculations of elastic properties of metallic FCC crystal surfaces", Phys. Rev. B., 71(9), 094104. https://doi.org/10.1103/PhysRevB.71.094104.
  46. Simsek, M. and Reddy, J.N. (2014), "Bending and free vibration of functionally graded piezoelectric beam based on modified strain gradient theory", Compos. Struct., 115, 41-50. https://doi.org/10.1016/j.compstruct.2014.04.005.
  47. Singh, S.J. and Harsha, S.P. (2019), "Nonlinear dynamic analysis of sandwich S-FGM plate resting on pasternak foundation under thermal environment", Eur. J. Mech.-A/Solid., 76, 155-179. https://doi.org/10.1016/j.euromechsol.2019.04.005.
  48. Sun, C.H., Li, F., Cheng, H.M. and Lu, G,Q. (2005), "Axial Young's modulus prediction of single walled carbon nanotube arrays with diameters from nanometer to meter scales", Appl. Phys. Lett., 87, 193-201. https://doi.org/10.1063/1.2119409.
  49. Thomas, J. and Sandeep, T.N. (2018), "Experimental study on circular CFST short columns with intermittently welded stiffeners", Steel Compos. Struct., 29(5), 659-667. https://doi.org/10.12989/scs.2018.29.5.659.
  50. Tilbrook, M.T., Radford, D.D., Deshpande, V.S. and Fleck, N.A. (2007), "Dynamic crushing of sandwich panels with prismatic lattice cores", Int. J. Solid. Struct., 44, 6101-6123. https://doi.org/10.1016/j.ijsolstr.2007.02.015.
  51. Vescovini, R., D'Ottavio, M., Dozio, L. and Polit, O. (2018), "Buckling and wrinkling of anisotropic sandwich plates", Int. J. Eng. Sci., 130, 136-156. https://doi.org/10.1016/j.ijengsci.2018.05.010.
  52. Wang, C.M. Xiang, Y. and Wang, Q. (2001), "Axisymmetric buckling of Reddy circular plates on Pasternak foundation", J. Eng. Mech., 127(3), 254-260. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:3(254).
  53. Xu, K., Yuan, Y. and Li, M. (2019), "Buckling behavior of functionally graded porous plates integrated with laminated composite faces sheets", Steel Compos. Struct., 32(5), 633-642. https://doi.org/10.12989/scs.2019.32.5.633.
  54. Xue, Z. and Hutchinson, J.W. (2004), "A comparative study of impulse resistant metallic sandwich plates", Int. J. Impact. Eng., 30, 1283-305. https://doi.org/10.1016/j.ijimpeng.2003.08.007.
  55. Yazdani, R. and Mohammadimehr, M. (2019), "Double bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and CNTRC face sheets: Wave propagation solution", Comput. Concrete, 24(6), 499-511. https://doi.org/10.12989/cac.2019.24.6.499.
  56. Yeh, J.Y. (2016), "Vibration characteristic analysis of sandwich cylindrical shells with MR elastomer", Smart Struct. Syst., 18(2), 233-247. https://doi.org/10.12989/sss.2016.18.2.233.
  57. Zhong, R., Wang, Q., Tang, J., Shuai, C. and Qin, B. (2018), "Vibration analysis of functionally graded carbon nanotube reinforced composites (FG-CNTRC) circular, annular and sector plates", Compos. Struct., 194, 49-67. https://doi.org/10.1016/j.compstruct.2018.03.104.
  58. Zhou, D., Au, F.T.K., Cheung, Y.K. and Lo, S.H. (2003), "Three dimensional vibration analysis of circular and annular plates via the Chebyshev-Ritz method", Int. J. Solid. Struct., 40, 3089-3105. https://doi.org/10.1016/S0020-7683(03)00114-8.
  59. Zimmerman, R.W. (2000), "Coupling in poroelasticity and thermoelasticity", Int. J. Rock. Mech. Min. Sci., 37(1), 79-87. https://doi.org/10.1016/S1365-1609(99)00094-5.