DOI QR코드

DOI QR Code

Analysis of Effective Improvement Depth for Establishing Quality Control Criteria of Rapid Impact Compaction for Public Fill Compaction

Public Fill 다짐 시 급속충격다짐공법의 품질관리기준 수립을 위한 유효개량심도 분석

  • 김규선 (삼성물산(주) 건설부문 기반기술팀 ) ;
  • 박재영 (삼성물산(주) 건설부문 토목ENG팀) ;
  • 김하영 (삼성물산(주) 건설부문 ENG실 )
  • Received : 2023.08.01
  • Accepted : 2023.09.04
  • Published : 2023.10.31

Abstract

The construction timeline for earthworks can be significantly reduced by substituting the conventional layer-by-layer compaction using a vibratory roller with single-layer compaction through the rapid impact compaction (RIC) method. Dynamic load compaction is well-suited for coarse-grained soils like sand. However, as the supply of sand, the primary reclamation material, becomes scarcer, the utilization of soil with fines is on the rise. To implement the dynamic load compaction, such as RIC, with reclaimed materials containing fines, it's imperative to determine the effective improvement depth. In this study, we assess the impact of the RIC method on the effective improvement depth for clean sand and public fill with fines, comparing field test results before and after RIC application. Our focus is on the cone resistance (qc) as it pertains to compaction quality control criteria. In conclusion, it becomes evident that standardizing the cone resistance is vital for the quality control of various reclaimed soils with fines. We have evaluated the compaction quality control criteria corresponding to a relative density (Dr) of 70% for clean sand as Qtn,cs = 110. As a result of this analysis, we propose new quality control criteria for qc, taking into account the fines content of reclaimed soils, which can be applied to RIC quality control.

일반적인 토공사에서 사용하는 진동롤러에 의한 층다짐을 급속충격다짐(RIC)공법을 이용한 일시 다짐으로 대체하면 토공에 소요되는 공사기간을 획기적으로 단축할 수 있다. 동적하중에 의한 다짐은 모래와 같은 조립질 토사에 적합한 공법으로 인식되고 있는데, 최근에는 매립 프로젝트의 주요 재료인 모래의 공급부족으로 세립분을 함유한 토사의 사용이 점차 증가하고 있다. 따라서 RIC와 같은 동적하중에 의한 다짐공법을 적용하기 위해, 세립분을 함유한 매립재료 사용 시의 유효개량심도에 대한 검증이 필요하다. 본 연구에서는 깨끗한 모래인 Sand fill과 세립분이 함유된 Public fill에 대한 RIC공법 적용 전·후의 현장시험 결과를 비교하여 세립분 함량에 따른 RIC공법의 유효개량심도에 대한 영향을 검토하고, 콘저항치 qc를 사용한 다짐 품질관리기준과 관련된 문제를 논의하였다. 결론적으로 세립분을 포함하는 다양한 종류의 매립토사에 대한 다짐 품질관리를 위해서는 qc 측정값의 정규화가 필요하며, 깨끗한 모래의 상대밀도 Dr=70%에 해당하는 다짐 품질관리기준은 정규화 콘저항치 Qtn,cs=110으로 평가되었다. 이러한 결과를 바탕으로, RIC 품질관리 시에 적용 가능한 매립토사의 세립분 함량을 고려한 심도별 qc 품질관리기준을 제안하였다.

Keywords

Acknowledgement

본 연구는 삼성물산(주) 건설부문의 지원으로 수행되었으며, 이에 깊은 감사를 드립니다.

References

  1. Adam, D. and Paulmich, I. (2007), "Rapid Impact Compactor-an innovative Compaction Device for Soil Improvement", Proceedings of the 8th International Geotechnical Conference, pp.183-193. 
  2. Baek, S.-H., Kim, J.-Y., Kim, N., Jeong, Y.-H., and Choi, C. (2020), "Fundamental Study on Earthwork Quality Control based on Intelligent Compaction Technology", Journal of the Korean Geotechnical Society, Vol.36, No.12, pp.45-56 (in Korean).  https://doi.org/10.7843/KGS.2020.36.12.45
  3. Becker, P.J. (2011), Assessment of Rapid Impact Compaction for Transportation Infrastructure Applications, Master's Thesis, Iowa State University, USA. 
  4. Bong, T.-H., Kim, S.-R., and Yoo, B.-S. (2019), "Evaluation of Estimation and Variability of Fines Content in Pohang for CPT-based Liquefaction Assessment", Journal of the Korean Geotechnical Society, Vol.35, No.3, pp.37-46 (in Korean).  https://doi.org/10.7843/KGS.2019.35.3.37
  5. BRE (2003), Specifying Dynamic Compaction, Building Research Establishment, BRE Report BR458. 
  6. Cheng, S.H., Chen, S.S., and Ge, L. (2021), "Method of Estimating the Effective Zone Induced by Rapid Impact Compaction", Scientific Reports, Vol.11, 18336. 
  7. Choi, C., Jeong, Y.-H., Baek, S.-H., Kim, J.-Y., Kim, N., and Cho, J.-W. (2021), "A Study for Deriv ing Target CMV (Compaction Meter Value) of Intelligent Compaction Earthwork Quality Control", Journal of the Korean Geotechnical Society, Vol.37, No.9, pp. 25-36 (in Korean).  https://doi.org/10.7843/KGS.2021.37.9.25
  8. Jamiolkowski, M., Ladd, C.C., Germaine, J.T., and Lancellotta, R. (1985), "New Developments in Field and Laboratory Testing of Soils", Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, USA, Vol.1, pp.57-153. 
  9. Kim, K.-S., Fratta, D., and Wen, H. (2014), "Field Measurements for the Effectiveness of Compaction of Coarse-grained Soils", KSCE Journal of Civil Engineering, Vol.18, No.2, pp.497-504.  https://doi.org/10.1007/s12205-014-0144-8
  10. Kim, K.-S. (2015), "Comparison of Elastic Moduli of Subgrade Soils Using Plate Loading Test, Soil Stiffness Gauge and Dynamic Cone Penetrometer", Journal of the Korean Geotechnical Society, Vol.31, No.3, pp.63-72 (in Korean).  https://doi.org/10.7843/KGS.2015.31.3.63
  11. Kim, K.-S. and Shin, D. (2022), "Comparison of Elastic Modulus Evaluated by Plate Load Test and Soil Stiffness Gauge Considering Strain and Ground Stiffness", Journal of the Korean Geotechnical Society, Vol.38, No.10, pp.31-40 (in Korean).  https://doi.org/10.7843/KGS.2022.38.10.31
  12. Kim, K.-S. (2023), "Design and Construction Management of Dynamic Compaction Method in Overseas Projects", Geotechnical Engineering, Vol.39, No.3, pp.56-68 (in Korean). 
  13. Kristiansen, H. and Davies, M. (2004), "Ground Improvement Using Rapid Impact Compaction", 13th World Conference on Earthquake Engineering, paper No.496. 
  14. Lee, J.-H., Lim, D.-S., and Chun, B.-S. (2010), "Numerical Study on the Prediction of the Depth of Improvement and Vibration Effect in Dynamic Compaction Method", Journal of the Korean Geotechnical Society, Vol.26, No.8, pp.59-66 (in Korean).  https://doi.org/10.7843/KGS.2010.26.8.59
  15. Lukas, R.G. (1995), Geotechnical Engineering Circular No.1: Dynamic Compaction, Publication No. FHWA-SA-95-037, Federal Highway Administration. 
  16. Robertson, P.K. and Wride C.E. (1998), "Evaluating Cyclic Liquefaction Potential Using the CPT", Canadian Geotechnical Journal, Vol.35, No.3, pp.442-459.  https://doi.org/10.1139/t98-017
  17. Robertson, P.K. (2009), "Interpretation of Cone Penetration Tests - a Unified Approach", Canadian Geotechnical Journal, Vol.46, No.11, pp.1337-1355.  https://doi.org/10.1139/T09-065
  18. Robertson, P.K. (2016), "Suggested QC Criteria for Deep Compaction Using the CPT", Geotechnical and Geophysical Site Characteristics 5, pp.711-715. 
  19. SAICE (2006), "Innovative New Ground Improvement Method Uses Controlled Dynamic Compaction", Civil Engineering, Vol.14, No.5, pp.3-6. 
  20. Tarawneh, B., Sbitnev, A., and Hakam, Y. (2017), "Lessons Learned from 11 Million m2 of Dynamic Compaction and Replacement", Ground Improvement, Vol.170, No.4, pp.208-217.  https://doi.org/10.1680/jgrim.17.00025
  21. TRB (1990), Guide to Earthwork Construction, State of the Art Report 8, Transportation Research Board, National Research Council, Washington, DC. 
  22. Woods, R.D. (1968), "Screening of Elastic Surface Waves by Trenches", Journal of Soil Mechanics and Foundations Division, Vol.94, No.4, pp.951-979. https://doi.org/10.1061/JSFEAQ.0001180