Acknowledgement
이 연구는 2022학년도 단국대학교 대학연구비 지원으로 연구되었음.
References
- Das T, Pillai MRA. Options to meet the future global demand of radionuclides for radionuclide therapy. Nucl. Med. Biol. 2013;40(1):23-32. DOI: https://doi.org/10.1016/j.nucmedbio.2012.09.007
- Yordanova A, Eppard E, KKrpig S, Bundschuh RA, SchKnberger S, Gonzalz-Crmona M, et al. Theranostics in nuclear medicine practice. Onco Targets Ther. 2017; 10:4821-8. DOI: https://doi.org/10.2147/OTT.S140671
- Moumaris M, Bretagne JM, Abuaf N. Nanomedical devices and cancer theranostics. Open Nanomedicine J. 2020;6(1):1-11. DOI: https://doi.org/10.2174/2666150002006010001
- https://www.iaea.org/newscenter/news/new-technique-to-fight-prostate-cancer-iaea-organizes-first-of-a-kind-training-for-radiopharmacists
- Majkowska-Pilip A, Gaweda W, Zelechowska-Matysiak K, Wawrowiczet K, Bilewicz A, et al. Nanoparticles in targeted alpha therapy. Nanomaterials(Basel). 2020;10(7):1-25. DOI: https://doi.org/10.3390/nano10071366
- Nedrow JR, Josefsson A, Park S, BKck T, Hobbs RF, Brayton C, et al. Pharmacokinetics, microscale distribution, and dosimetry of alpha-emitter-labeled anti-PD-L1 antibodies in an immune competent transgenic breast cancer model. EJNMMI Res. 2017; 7(1):57. DOI: https://doi.org/10.1186/s13550-017-0303-2
- Ackerman NL, Graves EE. The potential for Cerenkov luminescence imaging of alpha-emitting radionuclides. Phys Med Biol. 2012;57(3):771-83. DOI: https://doi.org/10.1088/0031-9155/57/3/771
- Seidlin SM, Marinelli LD, Oshry E. Radioactive iodine therapy: Effect on functioning metastases of adenocarcinoma of the thyroid. J Am Med Assoc. 1946;132(14):838-847. DOI: https://doi.org/10.1001/jama.1946.02870490016004
- Gudkov SV, Shilyagina NY, Zvyagin AV. Targeted radionuclide therapy of human tumors. Int J Mol Sci. 2015;17(1):1-19. DOI: https://doi.org/10.3390/ijms17010033
- https://www.cdc.gov/nceh/radiation/emergencies/glossary.htm#anchor_1556560988
- Cherel M, Davodeau F, Kraeber-Bodere F, Chatal JF. Current status and perspectives in alpha radioimmunotherapy, Q. J. Nucl. Med. Mol. Imaging 2006; 50:322-9. Retrieved from https://pubmed.ncbi.nlm.nih.gov/17043629/
- Sgorous G. Alpha-particles for targeted therapy. Adv Drug Deliv Rev. 2008;60(12):1402-6. DOI: https://doi.org/10.1016/j.addr.2008.04.007
- Harrison MR, Wong TZ, Armstrong AJ, George DJ. Radium-223 chloride: A potential new treatment for castration-resistant prostate cancer patients with metastatic bone disease. Cancer Manag. Res. 2013;5:1-14. DOI: https://doi.org/10.2147/CMAR.S25537
- Walicka MA, Vaidyanathan G, Zalutsky MR, Adelstein SJ, Kassis AI. Survival and DNA damage in chinese hamster V79 cells exposed to alpha particles emitted by DNA-incorporated astatine-211. Radiat. Res. 1998;150(3):263-8. DOI: https://doi.org/10.2307/3579974
- Sgouros G, Song H. Cancer stem cell targeting using the alpha-particle emitter, 213 Bi: Mathematical modeling and feasibility analysis George. Cancer Biother. Radiopharm. 2008;23(1):74-81. DOI: https://doi.org/10.1089/cbr.2007.0408
- Poty S, Francesconi LC, McDevitt MR, Morris MJ, Lewis JS. α-Emitters for radiotherapy: From basic radiochemistry to clinical studies-Part 2. J. Nucl. Med. 2018;59(7):1020-7. DOI: https://doi.org/10.2967/jnumed.117.204651
- Sollini M, Marzo K, Chiti A, Kirienko M. The five "W"s and "How" of targeted alpha therapy: Why? Who? What? Where? When? and How? Rend. Fis. Acc. Lincei. 2020;31:231-47. DOI: https://doi.org/10.1007/s12210-020-00900-2
- Huang CY, Oborn BM, Guatelli S, Allen BJ. Monte Carlo calculation of the maximum therapeutic gain of tumor antivascular alpha therapy. Med. Phys. 2012;39(3):1282-8. DOI: https://doi.org/10.1118/1.3681010
- Kassis AI. Therapeutic radionuclides: Biophysical and radiobiologic principles. Semin. Nucl. Med. 2008;38(5):358-66. DOI: https://doi.org/10.1053/j.semnuclmed.2008.05.002
- Tasnim I, Tala HS. Range of alpha particles in human tissue. J of Engineering and Applied Science. 2019;14(15):5060-3. DOI: https://doi.org/10.36478/jeasci.2019.5060.5063
- Pouget JP, Mather SJ. General aspects of the cellular response to low- and high-LET radiation. Eur. J. Nucl. Med. 2001;28(4):541-61. DOI: https://doi.org/10.1007/s002590100484
- Song H, Senthamizhchelvan S, Hobbs RF, Sgouros G. Alpha particle emitter radiolabeled antibody for metastatic cancer: What can we learn from heavy ion beam radiobiology? Antibodies. 2012;1(2):124-48. DOI: https://doi.org/10.3390/antib1020124
- Elbakry A, LKbrich M. Homologous recombination subpathways: A tangle to resolve. Sec. Human and Medical Genomics. Mini Review. 2021;12:1-7. DOI: https://doi.org/10.3389/fgene.2021.723847
- Li X, Heyer WD. Homologous recombination in DNA repair and DNA damage tolerance. Cell Research. 2008;18(1):99-113. DOI: https://doi.org/10.1038/cr.2008.1
- Hamada N, Maeda M, Otsuka K, Tomita M. Signaling pathways underpinning the manifestations of ionizing radiation-induced bystander effects. Curr Mol Pharmacol. 2011;4(2):79-95. DOI: https://doi.org/10.2174/1874467211104020079
- Azzam EI, De Toledo SM, Little JB. Oxidative metabolism, gap junctions and the ionizing radiation-induced bystander effect. Oncogene. 2003; 22(45):7050-7. DOI: https://doi.org/10.1038/sj.onc.1206961
- Azzam EI, De Toledo SM, Gooding T, Little JB. Intercellular communication is involved in the bystander regulation of gene expression in human cells exposed to very low uences of alpha particles. Radiat Res. 1998;150:497-504. DOI: https://doi.org/10.2307/3579865
- Wu LJ, Randers-Pehrson G, Xu A, Waldren CA, Geard CR, Yu Z, et al. Targeted cytoplasmic irradiation with alpha particles induces mutations in mammalian cells. Proc Natl Acad Sci USA. 1999; 96(9):4959-64. DOI: https://doi.org/10.1073/pnas.96.9.4959
- Azzam EI, De Toledo SM, Spitz DR, Little JB. Oxidative metabolism modulates signal transduction and micronucleus formation in bystander cells from alpha-particle-irradiated normal human fibroblast cultures. Cancer Res. 2002;62(19):5436-42. Retrieved from https://aacrjournals.org/cancerres/article/62/19/5436/509200/Oxidative-Metabolism-Modulates-Signal-Transduction
- Matsumoto H, Hayashi S, Hatashita M, Ohnishi K, Shioura H, Ohtsubo T, et al. Induction of radioresistance by a nitric oxide-mediated bystander effect. Radiat Res. 2001;155(3):387-96. https://doi.org/10.1667/0033-7587(2001)155[0387:IORBAN]2.0.CO;2
- Prise KM, O'Sullivan JM. Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer. 2009;9(5):351-60. DOI: https://doi.org/10.1667/0033-7587(2001)155[0387:iorban]2.0.co;2
- Sgouros G, Bodei L, Mcdevitt MR, Nedrow JR. Radiopharmaceutical therapy in cancer: Clinical advances and challenges. Nat Rev Drug Discov. 2020;19:589-608. DOI: https://doi.org/10.1038/s41573-020-0073-9
- Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 trial of 177Lu-dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125-35. DOI: https://doi.org/10.1056/NEJMoa1607427
- Pallares RM, Abergel RJ. Transforming lanthanide and actinide chemistry with nanoparticles. Nanoscale. 2020;12:1339-48. DOI: https://doi.org/10.1039/C9NR09175K
- Yue J, Pallares RM, Cole LE, Coughlin EE, Mirkin CA, Lee A, et al. Smaller CpG-conjugated gold nanoconstructs achieve higher targeting specificity of immune activation. ACS Appl Mater Interfaces. 2018;10(26):21920-6. DOI: https://doi.org/10.1021/acsami.8b06633
- Pallares RM, Choo P, Cole LE, Mirkin CA, Lee A, Odom TW. Manipulating immune activation of macrophages by tuning the oligonucleotide composition of gold nanoparticles. Bioconjug Chem. 2019;30(7):2032-7. DOI: https://doi.org/10.1021/acs.bioconjchem.9b00316
- Xie D, Wang MP, Qi WH. A simplified model to calculate the surface-to-volume atomic ratio dependent cohesive energy of nanocrystals. J Phys Condensed Matter. 2004;16(36):401-5. DOI: https://doi.org/10.1088/0953-8984/16/36/L01
- Piotrowska A, Meczynska-Wielgosz S, Majkowska-Pilip A, Kozminski P, WKjciuk G, CKdrowska E, et al. Nanozeolite bioconjugates labeled with 223Ra for targeted alpha therapy. Nucl Med Biol. 2017;47:10-8. DOI: https://doi.org/10.1016/j.nucmedbio.2016.11.005
- Sattiraju A, Xiong X, Pandya D, Wadas T, Xiong X, Sun Y, et al. Alpha particle enhanced blood brain/tumor barrier permeabilization in glioblastomas using integrin alpha-v beta-3-targeted liposomes. Mol Cancer Ther. 2017;16(10):2191-200. DOI: https://doi.org/10.1158/1535-7163.MCT-16-0907
- Mckeage K, Perry CM. Trastuzumab: A review of its use in the treatment of metastatic breast cancer overexpressing HER2. Drugs. 2002;62(1):209-43. DOI: https://doi.org/10.2165/00003495-200262010-00008
- Caron PC, Jurcic JG, Scott AM, Finn RD, Divgi CR, Graham MC, et al. A phase 1B trial of humanized monoclonal antibody M195 (anti-CD33) in myeloid leukemia: Specific targeting without immunogenicity. Blood. 1994;83(7):1760-8. DOI: https://doi.org/10.1182/blood.V83.7.1760.1760
- Simmons D, Seed B. Isolation of a cDNA encoding CD33, a differentiation antigen of myeloid progenitor cells. J Immunol. 1988;141(8):2797-800. DOI: https://doi.org/10.4049/jimmunol.141.8.2797
- Chang SS. Overview of prostate-specific membrane antigen. Rev Urol. 2004;6:S13-8. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1472940/
- Kratochwil C, Bruchertseifer F, Giesel FL, Weis M, Verburg FA, Mottaghy F, et al. 225Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med. 2016;57(12):1941-1944. DOI: https://doi.org/10.2967/jnumed.116.178673
- Sathekge M, Bruchertseifer F, Knoesen O, Reyneke F, Lawal I, Lengana T, et al. 225Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: A pilot study. Eur J Nucl Med Mol Imaging. 2019;46(1):129-138. DOI: https://doi.org/10.1007/s00259-018-4167-0
- Couturier O, Supiot S, Degraef-Mougin M, Faivre-Chauvet A, Carlier T, Chatal JF, et al. Cancer radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med Mol Imaging. 2005;32(5): 601-14. DOI: https://doi.org/10.1007/s00259-005-1803-2
- Scheinberg DA, McDevit MR. Actinium-225 in targeted alpha-particle therapeutic applications. Curr Radiopharm. 2011;4(4):306-20. DOI: https://doi.org/10.2174/1874471011104040306
- Wadas TJ, Pandya DN, Solingapuram Sai KK, Mintz A. Molecular targeted α-particle therapy for oncologic applications. Am J Roentgenol. 2014;203(2): 253-60. DOI: https://doi.org/10.2214/AJR.14.12554
- McDevitt MR, Finn RD, Ma D, Larson SM, Scheinbeerg DA. Preparation of alpha-emitting 213Bi-labeled antibody constructs for clinical use. J Nucl Med. 1999;40(10):1722-7. Retrieved from https://pubmed.ncbi.nlm.nih.gov/10520715/ 10520715
- Larsen RH, Wieland BW, Zalutsky MR. Evaluation of an internal cyclotron target for the production of 211At via the 209Bi (α,2n)211 at reaction. Appl. Radiat. Isot. 1996;47(2):135-43. DOI: https://doi.org/10.1016/0969-8043(95)00285-5
- Nilsson S, Larsen RH, Fossa SD, Balteskard L, Borch KW, Westlin JE, et al. First clinical experience with alpha-emitting radium-223 in the treatment of skeletal metastases. Clin. Cancer Res. 2005;11(12):4451-9. DOI: https://doi.org/10.1158/1078-0432.CCR-04-2244
- Larsen RH, Borrebaek J, Dahle J, Melhus KB, Krogh C, Valan MH, et al. Preparation of 227Th-labeled radioimmunoconjugates, assessment of serum stability and antigen binding ability. Cancer Biother. Radiopharm. 2007;22:431-37. DOI: https://doi.org/10.1089/cbr.2006.321
- Kozak RW, Atcher RW, Gansow OA, Friedman AM, Hines JJ, Waldmann TA. Bismuth-212-labeled anti-tac monoclonal antibody: alpha-particle-emitting radionuclides as modalities for radioimmunotherapy. Proc. Natl. Acad. Sci. USA. 1986;83(2):474-8. DOI: https://doi.org/10.1073/pnas.83.2.474
- Parker C, Heinrich D, O'Sullivan JM, Fossa S. Overall survival benefit of Radium223 Chloride (AlpharadinTM) in the treatment of patients with symptomatic bone metastases in Castration-resistant Prostate Cancer (CRPC): A phase III randomized trial (ALSYMPCA). 2011 European Journal of Cancer. 2011;47(2):3-3. Retrieved from https://abstracts.ncri.org.uk/abstract/overall-survival-benefit-of-radium-223-chloride-alpharadin-in-the-treatment-of-patients-with-symptomatic-bone-metastases-in-castration-resistant-prostate-cancer-crpc-a-phase-iii-randomiz-3/ https://doi.org/10.1016/S0959-8049(11)70100-9
- Tagawa ST, Sun M, Sartor AO, Thomas C, Singh S, Bissassar M, et al. Phase I study of 225Ac-J591 for men with metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2021;39(15): 5015. DOI: https://doi.org/10.1200/JCO.2021.39.15_suppl.5015
- Tagawa ST, Sun MP, Nauseef JT, Thomas C, Castellanos SH, Thomas JE, et al. Phase I dose-escalation results of prostate-specific membrane antigen-targeted radionuclide therapy (PSMA-TRT) with alpha-radiolabeled antibody 225Ac-J591 and beta-radioligand 177Lu-PSMA I&T. J. Clin. Oncol. 2023;41:5018. DOI: https://doi.org/10.3390/ijms241411626
- Jurcic GJ, Larson SM, Sgouros G, Mcdevitt MR, Finn RD, Divgi CR, et al. Targeted αparticle immunotherapy for myeloid leukemia. Blood. 2002; 100(4):1233-9. DOI: https://doi.org/10.1182/blood.V100.4.1233.h81602001233_1233_1239
- Rosenblat TL, McDevitt MR, Mulford DA, Pandit-Tskar N, Divgi CR, et al. Sequential cytarabine and alpha-particle immunotherapy with bismuth-213-lintuzumab (HuM195) for acute myeloid leukemia. Clin Cancer Res. 2010;16(21):5303-11. DOI: https://doi.org/10.1158/1078-0432.CCR10-0382
- https://www.doctorsnews.co.kr/news/articleView.html?idxno=21794
- Schmidt DF, Neumann C, Antke C, Apostolidis S, Martin A, Morgenstern R, et al. Phase 1 clinical study on alpha-therapy for non-Hodgkin lymphoma. In 4th Alpha-Immunotherapy Symposium, A Morgenstern, Ed. Dusseldorf, Germany; 2004.
- Kwekkeboom DJ, De Herder WW, Kam BL, Van Eijck CH, Van Essen M, Kooij PP, et al. Treatment with the radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3] octreotate: Toxicity, efficacy, and survival. J. Clin. Oncol. 2008;26(13):2124-30. DOI: https://doi.org/10.1200/JCO.2007.15.2553
- Kratochwil C, Giesel FL, Bruchertseifer F, Mier W, Apostolidis C, Boll R, et al. 213Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: A first-in-human experience. Eur. J. Nucl. Med. Mol. Imaging. 2014;41(11):2106-19. DOI: https://doi.org/10.1007/s00259-014-2857-9
- http://www.bosa.co.kr/news/articleView.html?idxno=2201031
- Krolicki L, Bruchertseifer F, Kunikowska J, Koziara H, Krolicki B, Jakucinski M, et al. Safety and efficacy of targeted alpha therapy with 213Bi-DOTAsubstance P in recurrent glioblastoma. Eur J Nucl Med Mol Imaging. 2019;46(3):614-22. DOI: https://doi.org/10.1007/s00259-018-4225-7
- Cordier D, Forrer F, Bruchertseifer F, Morgenstern A, Apostolidis C, Good S, et al. Targeted alpha-radionuclide therapy of functionally critically located gliomas with 213Bi-DOTA-[Thi8,Met(O2)11]-substance P: A pilot trial. Eur J Nucl Med Mol Imaging. 2010;37(7):1335-44. DOI: https://doi.org/10.1007/s00259-010-1385-5
- Zalutsky MR, Reardon DA, Akabani G, Coleman RE, Friedmn AH, Friedmn HS, et al. Clinical experience with alpha-particle emitting 211At: Treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J Nucl Med. 2008;49(1):30-8. DOI: https://doi.org/10.2967/jnumed.107.046938
- Andersson H, Cederkrantz E, Back T, Divgi C, Elgqvist J, Himmelman J, et al. Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: Pharmacokinetics and dosimetry of (211)At-MX35 F(ab')2-A phase I study. J. Nucl. Med. 2009;50(7):1153-60. DOI: https://doi.org/10.2967/jnumed.109.062604
- Pallares RM, Abergel RJ. Development of radiopharmaceuticals for targeted alpha therapy: Where do we stand? Front. Med. 2022:1-16. DOI: https://doi.org/10.3389/fmed.2022.1020188
- Allen BJ, Raja C, Rizvi S, Li Y, Tsui W, Zhang D, Song E, et al. Targeted alpha therapy for cancer. Phys Med Biol. 2004;49(16):3703-12. DOI: https://doi.org/10.1088/0031-9155/49/16/016
- McDevitt MR, Sgouros G, Finn RD, Humm JL, Jurcic JG, Larson SM, et al. Radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med. 1998;25(9):1341-51. DOI: https://doi.org/10.1007/s002590050306
- Cordes N, Meineke V. Cell adhesion-mediated radioresistance (CAM-RR): Extracellular matrix-dependent improvement of cell survival in human tumor and normal cells in vitro. Strahlenther Onkol. 2003;179(5):337-44. DOI: https://doi.org/10.1007/s00066-003-1074-4
- Radchenko V, Morgensten A, Jalilian AR, Ramogida CF, Cutler C, Duchemin C, et al. Production and supply of alpha particles emitting radionuclides for Targeted Alpha Therapy (TAT). J Nucl Med. 2021; 62(11):1495-503. DOI: https://doi.org/10.2967/jnumed.120.261016
- Pouget JP, Constanzo J. Revisiting the radiobiology of targeted alpha therapy. Front Med. 2021;8:1-11. DOI: https://doi.org/10.3389/fmed.2021.692436
- Kim YS, Brechbiel MW. An overview of targeted alpha therapy. Tumor Biol. 2012;33(3):573-90. DOI: https://doi.org/10.1007/s13277-011-0286-y
- Morgenstern A, Apostolidis C, Kratochwil C, Sathekge M, Krolicki L, Bruchertseifer F. An overview of targeted alpha therapy with actinium-225 and bismuth-213. Curr Radiopharm. 2018;11(3):200-208. DOI: https://doi.org/10.2174/1874471011666180502104540
- Choi SG. Literature review of clinical usefulness of heavy ion particle as an new advanced cancer therapy. Journal of Radiological Science and Technology. 2019;42(6):413-22. DOI: http://dx.doi.org/10.17946/JRST.2019.42.6.413
- Song GS, Bae JR, Kim JG. A comparison for treatment planning of tomotherapy and proton therapy in prostate cancer. Journal of Radiological Science and Technology. 2013;36(1):31-8. DOI: https://doi.org/10.17946/JRST.2019.42.6.413