DOI QR코드

DOI QR Code

A Review of Enhanced Oil Recovery Technology with CCS and Field Cases

CCS와 연계한 석유회수증진 기술 동향 및 현장사례 분석

  • Park Hyeri (Dept. of Energy and Mineral Resources Engineering, Kangwon National University) ;
  • Hochang Jang (Dept. of Energy Resources and Chemical Engineering, Kangwon National University)
  • 박혜리 (강원대학교 에너지자원융합공학과) ;
  • 장호창 (강원대학교 에너지자원화학공학과)
  • Received : 2023.05.03
  • Accepted : 2023.07.27
  • Published : 2023.09.30

Abstract

Carbon capture, and storage (CCS) is important for the reduction of greenhouse gases and achieving carbon neutrality. CCS focuses on storing captured CO2 permanently in underground reservoirs. CO2-enhanced oil recovery (CO2-EOR) is one form of CCS, where CO2 is injected into the underground to enhance oil recovery. CO2-EOR not only aids in the extraction of residual oil but also contributes to carbon neutrality by storing CO2 underground continuously. CO2-EOR can be classified into miscible and immiscible methods, with the CO2-water alternating gas (CO2-WAG) technique being a representative approach within the miscible method. In CO2-WAG, water and CO2 are alternately injected into the reservoir, enabling oil production and CO2 storage. The WAG method allows for controlling the breakthrough of injection fluids, providing advantages in oil recovery. It also induces hysteresis in relative permeability during the injection and production process, expanding the amount of trapped CO2. In this study, the effects of enhancing oil recovery and storing CO2 underground during CO2-EOR were presented. Additionally, cases of CO2-EOR application in relation to CCS were introduced.

온실가스 감축과 탄소 중립의 실현을 위해서 탄소의 포집, 저장(carbon capture, and storage, CCS) 기술은 매우 중요하다. CCS는 CO2 저장을 중점적으로 함으로써, 포획된 CO2를 지하 저류층 내부에 영구적으로 보관하는 역할을 한다. CO2--EOR(enhanced oil recovery)은 CCS의 한 형태로, 오일 회수 촉진을 위해 CO2를 지하 내부로 주입시켜 잔류 오일 회수에 도움을 줄 뿐만 아니라 CO2가 지하에 저장되어 탄소 중립에도 기여하는 기술이다. 이 CO2-EOR은 혼화공법과 비혼화공법으로 분류하며 혼화공법의 대표적인 방식인 CO2-WAG(water alternating gas)는 물과 CO2를 저류층 내부에 교대로 주입하여 오일을 생산하고 CO2를 저장하는 공법이다. WAG 방식은 주입 유체의 돌파를 조절할 수 있어 오일 회수에 유리한 특징을 보이며, 흡입과 배출 과정 중에 상대투과도의 이력현상을 유도해 CO2의 잔류 격리량을 확대할 수 있다. 본 연구에서는 CO2-EOR 과정에서의 석유회수증진 효과와 CO2가 지중에 저장되는 메커니즘을 설명하였으며, CCS와 연계한 CO2-EOR 적용 사례를 소개하였다.

Keywords

Acknowledgement

본 연구는 2022년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업이며(No.2020R1F1A1048182), 2023년도 정부(산업통상자원부)의 재원으로 해외자원개발협회의 지원을 받아 수행된 연구입니다(2021060001, 데이터사이언스 기반 석유·가스 탐사 컨소시엄).

References

  1. Kim, H. M., Bae, W. S., "Enhanced Oil Recovery (EOR) Technology Coupled with Underground Carbon Dioxide Sequestration", TUNNEL & UNDERGROUND SPACE, 23(1), 1-12, (2013) https://doi.org/10.7474/TUS.2013.23.1.001
  2. Cai, M. G., Su, Y., Hao, Y., Guo, Y., Elsworth, D., Li, L., Li, D., Li, X., "Monitoring oil displacement and CO2 trapping in low-permeability media using NMR: A comparison of miscible and immiscible flooding", Fuel, 305, 1-14, (2021)
  3. Han, B., Lee, J., "Investigation on the Technical Characteristics and Field Cases of CO2 Enhanced Oil Recovery", Journal of the Korean Society of Mineral and Energy Resources Engineers, 51(4), (2014)
  4. Brad, C., Doug, S.,, Patrice, Lahlum., "STATE & FEDER AL POLICY DRIVERS FOR GROWING AMERICA'S CARBON CAPTURE & CO2-EOR INDUSTRY", Great plains institute, 1-84, (2016)
  5. Shokufe, A., Nima, R., Sohrab, Z., A comprehensive review on Enhanced Oil Recovery by Water Alternating, Fuel, 227, 1-29, (2018) https://doi.org/10.1016/j.fuel.2018.04.049
  6. John R., Enhanced Recovery and Coal Gas Modeling, Principles of Applied Reservoir Simulation (Fourth Edition), (2018)
  7. Mohammed A., Shadfar D., David W., Valeriy R., and Konstantin M., "Carbon Dioxide Applications for Enhanced Oil Recovery Assisted by Nanoparticles: Recent Developments", ACS Omega 2022, 7(12), 9984-9994, (2022) https://doi.org/10.1021/acsomega.1c07123
  8. Wikipedia from encyclopedia, Enhanced oil recovery, 2021, https://en.wikipedia.org/wiki/Enhanced_oil_recovery
  9. Drilling Formulas.com Three Types of Reservoir Recovery,2016,https://www.drillingformulas.com/three-types-of-reservoir-recovery/
  10. Enviro fluid, Oil Recovery Techniques - The need for Enhanced Oil Recovery, 2023, https://www.envirofluid.com/articles/oil-recovery-techniques-the-need-for-enhanced-oil-recovery/
  11. Zhang, N., Wei, M., Fan J., Aldhaheri M., Zhang, Y., Bai, B., "Development of a hybrid scoring system for EOR screening by combining conventional screening guidelines and random forest algorithm", Fuel, 256, 1-10, (2019) https://doi.org/10.1016/j.fuel.2019.115915
  12. Lee, M., Effect of Capillary Trapped CO2 on Oil Production during CO2 WAG Process in Heterogeneous Reservoir, Hanyang Univ, (2016)
  13. Christophe, M., Can CO2-EOR really provide carbon-negative oil?, IEA, (2019)
  14. Heidug, H., Lipponen, J., McCoy, S., Benoit, P., Storing CO2 through Enhanced Oil Recovery Combining EOR with CO2 storage (EOR+) for profit, International Energy Agency (IEA), (2015)
  15. Stern, D., 1 "Mechanisms of Miscible Oil Recovery:Effects of Pore-Level Fluid Distribution," SPE Annual, 579-594, (1991)
  16. Vladimir, V., Baghir, S., Ahmad, S., Eldar, Z., 7-Oil recovery stages and methods, Primer on science direct, 53-63, (2020)
  17. Bailian, C., Albert C. R., "CO2 Water-Alternating-Gas Injection for Enhanced Oil Recovery:Optimal Well Controls and Half-Cycle Lengths", Computers and Chemical Engineering, 113(8), 44-56, (2018) https://doi.org/10.1016/j.compchemeng.2018.03.006
  18. Osama, M., Ahmad, A., "A review of recent developments in CO2 mobility control in enhanced oil recovery", Petroleum, 8(3), 291-317 (2021) https://doi.org/10.1016/j.petlm.2021.05.002
  19. Kim, G., Kim, Y., Shin, C., Lee, J., "Analysis on the Design Parameters and Evaluation of the Oil Recovery in CO2-WAG Process", Korean Soc. Miner. Energy Resour., 52(2), 129-138, (2015) https://doi.org/10.12972/ksmer.2015.52.2.129
  20. Jia, B., Tsau, J., Barati, R., "A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs", Fuel, 236, 1-24, (2019) https://doi.org/10.1016/j.fuel.2018.08.153
  21. Son, H. A., "Review of the CO2 Geological Storage Using Nanoparticle-stabilized CO2 Foam", Economic and Environmental Geology, 53(2), 1-8, (2020) https://doi.org/10.9719/EEG.2020.53.1.1
  22. Azza, H., Dhiya, S., Mohd Z., Wan R., Augustine, A., Comparative numerical study for polymer alternating gas (PAG) fooding in high permeability condition, Springer Nature, 2(5), 1-12, (2020) https://doi.org/10.1007/s42452-020-2673-8
  23. Susan J. A., Behdad A., Matthew T. B., Philip C. B., Steven L. B., Bayani C., Kuldeep C., Randall T. C., Wen D., Thomas D., David A., Peter E., Marc A., Chun H., Edward N., Yashar M., Craig M., Yoon H., "Chemical and Hydrodynamic Mechanisms for Long-Term Geological Carbon Storage", The Journal of Physical Chemistry C, 118(28), 15103-15113, (2014) https://doi.org/10.1021/jp5006764
  24. Yoo, J., Park, C., Kim., H. T., "Utilization of Nanotechnology in Enhanced Oil Recovery", Journal of the Korean Society of Mineral and Energy Resources Engineers, 48(6), 794-801, (2011)
  25. Matroushi. M., Pourafshary. P., Wahaibi. Y., "Possibility of Nanofluid / Gas Alternating Injection as an EOR method in an oil field", SPE, 177434, (2015)
  26. Cho, J., CO2 잡는 기술 이산화탄소 포집 및 저장 기술, Republic of Korea Ministry of Education, https://if-blog.tistory.com/2084, (2012)
  27. Perera, M. S. A., Gamage, P. R., Rathnaweera, D. T., Ranathunga, A. S., Koay, A., Choi, X., "A Review of CO2-Enhanced Oil Recovery with a Simulated Sensitivity Analysis", MPDI energies, 9(7), 481, (2016)
  28. Tenthorey, E., Taggart, I., Kalinowski A., McKennaB J., "CO2-EOR+ in Australia: achieving low-emissions oil and unlocking residual oil resources", The APPEA Journal., 61, 118-131, (2021) https://doi.org/10.1071/AJ20076
  29. Hornafius, K. Y., and Hornafius, J. S., "Carbon negative oil: A pathway for CO2 emission reduction goals", International Journal of Greenhouse Gas Control , 37, 492-503, (2015) https://doi.org/10.1016/j.ijggc.2015.04.007
  30. Jang, K. R., "CCS와 결합된'원유회수증진기술(CO2-EOR)'의 현황 및 전망", Nice, 30(2), (2012)
  31. McGuire, P. L., Redman, R. S., Mathews, W. L., "Unconventional Miscible EOR Experience at Prudhoe Bay", SPE/DOE Improved Oil Recovery Symposium, SPE-39628-MS, (1998)
  32. With 50 Billion Barrels Awaiting the Drill Bit, Alaska's New Governor wants to Slash the Time Between Lease Acquisition and Drill Rotation, Oil & Gas 360, Exploration and Production (E&P), (2015)
  33. Wildgust, N., Gilboy, C., Tontiwachwuthikul, P, "Introduction to a decade of research by the Weyburn-Midale CO2 Monitoring and Storage Project", International Journal of Greenhouse Gas Control ,16, S1-S4, (2013) https://doi.org/10.1016/j.ijggc.2013.03.014
  34. Srivastava, R. K., Huang, S. S., Dong, M., "Laboratory Investigation of Weyburn CO2 Miscible Flooding", JCPT, 39(2), 41-51, (2000) https://doi.org/10.2118/00-02-04
  35. IEA GHG, The World's Largest CO2 Storage Research Project with EOR, 2023, https://www.cslforum.org/cslf/sites/default/files/documents/IEAGHGWeyburnProjectPoster0307.pdf
  36. Sminchak, J., Mawalka, S., Gupta, N., "Large CO2 storage volumes result in net negative emissions for green house gas life cycle analysis based on record from 22 years of CO2-enhanced oil recovery operations", Energy & Fuels, 34(3), 3566-3577, (2020) https://doi.org/10.1021/acs.energyfuels.9b04540
  37. ARI, Optimization of CO2 storage in CO2 enhanced oil recovery projects. Prepared for Department of Energy & Climate Change (DECC) Office of Carbon Capture & Storage, (2010)
  38. Brian T, Larry P, "CO2 EOR From a North Michigan Silurian Reef", SPE, Eastern Regional Meeting, 111223, (2007)
  39. Wegemann, C. H., The Salt Creek Oil Field Wyoming, Bulletin, 670, USGS, (1918)
  40. Hendricks, K., "Experiences in the Salt Creek Field CO2 flood 5th Annual Wellbore Integrity Network", May 13-14, (2009)
  41. Eri,. P., CO2 Enhanced Oil Recovery in Wyoming: 2020 Update, EORI BULLETIN, Enhanced oil recovery Institute, 1-45, (2022)
  42. S, wo., L. D. Whiteman., J. R. Steidtmann., "Estimates of Potential CO2 Demand for CO2 EOR in Wyoming Basins", SPE, Enhanced Oil Recovery Institute, 122921, (2009)
  43. Tian, ABOUT Jilin Oilfield Company, CNPC, http://talent.cnpc.com.cn/introduction?deptName=Jilin%20Oilfield%20Company&deptId=225
  44. Carmen, Jilin (PetroChina) Conventional Oil Field, Chin, Offshore Technology, 2021, https://www.offshore-technology.com/marketdata/jilin-petrochina-conventional-oil-field-china/
  45. Shaoran, R., Baolun, N., Bo, R., Yongzhao, L., Wanli, K., Guoli, C., Hui, Z., Hua, Z., "Monitoring on CO2 EOR and Storage in a CCS Demonstration Project of Jilin Oilfield China", SPE, 145440, (2011)
  46. Wang, G., "Carbon dioxide capture, enhanced-oil recovery and storage technology and engineering practice in Jilin Oilfield, NE China", PETROLEUM EXPLORATION AND DEVELOPMENT, 50(1), 245-254, (2023) https://doi.org/10.1016/S1876-3804(22)60384-7
  47. Liang, Z., Bo, R., Haidong, H., Yongzhao, L., Shaoran, R., Guoli, Chen., Hua, Z., "CO2 EOR and storage in Jilin oilfield China: Monitoring program and preliminary results", Journal of Petroleum Science and Engineering, 125, 1-12, (2015) https://doi.org/10.1016/j.petrol.2014.11.005
  48. Carman, Jilin Petro China Conventional Oil Field, China, Off Shore Technology, 2021, https://www.offshore-technology.com/marketdata/jilin-petrochina-conventional-oil-field-china/
  49. Kim, K. H., 엑손모빌 "세계 탄소포집.저장 시장, 2050년 5천조원 될 것", 연합뉴스, 2022, https://www.yna.co.kr/view/AKR20220420119200009
  50. Tian, S., Zhao, G., "Monitoring and Predicting CO2 Flooding using Material Balance Equations", J. of Canadian Petroleum Technology, 47, 41-47, (2011) https://doi.org/10.2118/08-11-41