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ABSTRACT. This paper investigates an extended form Hurwitz-Lerch zeta function, as
well as related integral images, ordinary and fractional derivatives, and series expansions,
using the term extended beta function. We establish a connection between the extended
Hurwitz-Lerch zeta function and the Laguerre polynomials. Furthermore, we present a
probability distribution application of the extended Hurwitz-Lerch zeta function(iji. Sev-
eral results, both known and new, are shown to follow as special cases of our findings.

1. Introduction

The Hurwitz zeta function is classically defined by the formula [10]:

(1.1) ¢(z,a) = Z (a+n)™7 (a€C\Zy;R(z) > 1),

n=0
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which is a generalization of the Riemann zeta function
(1.2) ((2)=>_n7 (R(z) >1).
n=0

Here and elsewhere, let C,R,N, Ny and Z, denote, respectively the sets of the
complex numbers, real numbers, positive integers, non-negative integers, and the
non-positive integers.

The Hurwitz-Lerch zeta function [10,p.27(1)]:

oo

(1.3) D(y,z2,a) = Z ﬁ,

n=0
(a € C\ Zy;z € C when |y| < 1;R(z) > 1 when |y| = 1),

is a special function that generalizes the Hurwitz zeta function ((z,a). ® is an
analytic function in both variables y and z in a suitable region and it reduces to
the ordinary Lerch zeta function when y = 2™ :

(14) @(627Ti)\’z7a’):d)()\’z’a):;m'

The zeta function ®(y, z,a) has since been extended by Goyal and Laddha [15,p.
100 (1.5)] in the form:

(1.5) O (2, 2,0) = ) (W

133 zn!’
— (a+n)™n!
where (), = F(FOE:)")

u € C,a+#Zy and |z| < 1. Obviously, when p =1, (1.5) reduces to (1.3).
Bin-Saad introduced the hypergeometric type generating function of the Hurwitz-
Lerch zeta function in [5], which is defined by (1.3) and (1.5) as follows:

= a(a+1)...(a + n — 1) denotes the Pochhammer’s symbol,

m

(1) m®(y, z,a+ Am)—r

NE

(1.6) Kz, y:2,0) =
0

3
i

where |z| < 1,|y| < L;u € C\Zy, A € C\{0};a € C\ {—(n+ Im)},{n,m} € Ny
and ® is the Hurwitz-Lerch zeta function defined by (1.3).

The case when y = 0 of the definition (1.6) gives us the following further general-
ization of the zeta function defined by (1.5) [5]:

My

@) @ 0:5a) = @y (o) = 3 — "
m=0



On Extended Hurwitz-Lerch Zeta Function 487

where |z| < L;p € C\Zj;a € C\{—(Am)},m € Ny.
A further generalization of the Hurwitz-Lerch zeta function @7 ( see Eq. (1.5)):

(1.8) Dy (T, 2,0) = ZM,

where A, p € C;v,a € C\Zy ;2 € C when |z| < 1;R(z +v — A — p) > 1 when |z| =

1, was investigated earlier by Garg et al. [14,p.313, Eq(1.7)]. The Beta function
B(z,y) is a function of two complex variables z and y and defined by

Bo.y) = {fo =11 —t)¥=1dt,  R(z) > 0,R(y) > 0,

I'(x)T —
lf(z+§/y)), z,y € C\Z,.

(1.9)

The integrals in (1.9) are known as first-order Eulerian integrals. Several authors
have recently considered extensions of some well-known special functions (see [6-9]).
Chaudhry et al. [5] presented the following extension of the Beta function in 1997:
(1.10)

Blayin) = [ 7= 0 e | ) > 0,00 > 0,20) >0

and it has been proved that this extension has a connection with Macdonald, Error,
and Whittaker’s functions. Subsequently, Chaudhry et al. [8] used the definition
of the function B(z,y;p) to provide an extension of the Gaussian hypergeometric
function 5 F; and the confluent hypergeometric function | F} as follows

(1.11)

X B(b+n,c—b;p)a), z"
F, (a,b;¢;z) :Z ( B c—b))( ) g;pZO, lz] < 1,R(c) > R(b) > 0,
n=0 ’ ’

and

= B(b+n,c—b;p)z"
. . C: = _ > .
(1.12) @, (a,b;c;2) E Bloc—b) nl ip >0, |z) < 1L,R(c) > R(D) >0

n=

The special cases of (1.10), (1.11), and (1.12) when p = 0 reduce immediately to
the classical beta function B(z,y), the Gaussian hypergeometric function o Fy and
confluent hypergeometric function ; F respectively. Various integral representations
[6] of the extended beta function are available, two of which are shown below:

(1.13) B(z,y;p) = 2/2 (cos 0)**~*(sin §)* ! exp(—p sec? O csc? 0)d0,
0
(1.14) B(a,b;p) = 21727 /_OO exp [(a —b)z — 4 pcosh? )] (cosflli)a‘*‘bdx'
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Formulas (1.13) and (1.14) can be obtained by using ¢t = cos?# and ¢t = tanhx
in formula (1.10) respectively. By using the definition (1.5) and the extended
Beta function (1.10), the authors in [25] introduced an extension of the general-
ized Hurwitz-Lerch zeta function as follows:

o0

B(H‘f‘?’l,u—u;p) ()\)nzn
nzz;) B(p,v—p)  nl(a+n)*

(115) q)/\,u,,l/(zwgaa’;p) =

In [1] Barnes introduced double zeta function in the form:

(1.16) (z;a,w) ZZ a+n+mw)

m=0n=0

where a > 0,w is a non-zero complex number with |arg(w)| < 7.

Note that the definition (1.16) is direct generalization of Hurwitz zeta function (1.1)
and also we observe that in (1.16) the product of an arbitrary parameter w with the
summation index m. Again, for n = 0, equation (1.16) reduces to the zeta funtion:

(1.17) (raw) =3
m=0

— (a4 wm)*’

which further for w = 1 reduces to Hurwitz zeta function (1.1) and forw =1, a =0
gives us the Riemann zeta function:

(1.18) ((2)=>_ m™*
m=0

Barnes [2] then proceeded to develop a theory of more general functions and he
introduced the multiple zeta function defined by

1
(119) Cr(s;aa (wla"' , W Z Z a+m1w1 + - —&-mrwr)

m1=0 m,-=0

Motivated by the works of Barnes (1.16) and (1.19), recently many researchers
adopted the approach of Bernes in [1] and [2] and proposed new extended (and gen-
eralized) Hurwitz zeta functions. For instance, Bin-Saad [5] proposed the definition
(1.7) as an analogy and generalization of the definition in (1.17). Further, in [21]
Matsumoto introduced a generalization of Hurwitz zeta function in the form

Cr((sla"' 75r)§(0417"’ ’ar),(wl’... ’wr))
(1.20)

o oo

Z Z aj+miwy) "%t X (o Fmiwi+maows) T2 X - X (o +mywi - mpewr) T

m1=0 m-=0

Sr
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Furthermore, a generalized Hurwitz-Lerch zeta function is proposed in the following
manner (see [19]):

o0

(1.21) qﬁz"ﬂ(z, s,a) = Z ()n2"

— (a+ azfn)*n! '

It is worth noting that adding a complex parameter, say A multiplied by the sum-
mation index m to the denominator, as shown in equations (1.7), (1.16), (1.17), and
(1.19)-(1.21), makes the factor Am arbitrary, and various interesting special cases
can be obtained by appropriately specializing the relevant parameter A. In this
paper, we use the same approach asin [1, 2, 4, 21, 25] to introduce a new extended
Hurwitz-Lerch zeta function (V N(x;z,a;p). This class of zeta function has a richer
mathematical structure and many related useful properties that cannot be deduced
from known definitions. The rest of this paper is organized as follows. In Section 2
we introduce and describe some properties and relationships for the function CS:’;

Relevant connections of the function C with those considered in [5] are also in-
dicated. In Section 3, we establish several integral representations for the function
CSK involving integral representations of Eulerian integral of the second kind, con-
tour integral and Mellin-Barnes integral. Section 4 is devoted to the differentiation
of the function sz/\ with respect to arguments z,z, A\, and a. In Section 5, we

present some series expansions for the function Ci’ﬁ involving Appell’s function of
two variables Fy, the extended Gauss hypergeonfetric function F},, the extended
confluent hypergeometric function ®,, and the generalized hypergeometric function
3F5. Also, we present a connection between our new extended zeta function and
the Laguerre polynomials. Finally, in Sectlon 6, we present an application of the
extended Hurwitz-Lerch zeta function C to probability distributions.

2. The Extended Hurwitz-Lerch Zeta Function Cg’ﬁf(x; z,a;p)

Based on the extension of Euler’s beta function (1.10) and Hurwitz-Lerch zeta
function (1.7), we propose and investigate an extended Hurwitz-Lerch zeta function
of the form

o0

-y B( u+m v—pp)  (6)ma™
B(p,v—pn)  ml(a+Im)?’

(2.1) Céf\‘ (z;2,a;p)

m=0
(Jo] < 1;{0,n,v} € C\ Zg,A € C\ {0};a € C\ {—(Am)},R(p) > 0,m € Np) .

Remark 2.1. By letting A = 1 in (2.1), we obtain the definition (1.15) of Parmar
and Raina [25]. Hence definition (2.1) is a unification and generalization of (1.15).
Consequently, if we let A = 1 in any result of our findings in this work, we get new
formulas for the definition (1.15).

Clearly, we have
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(22) G (1 2,:0) = ((2,0),
(2.3) Clz’f(x; 2,a;0) = ®(z, 2, a),
(2.4) (w5 2,0, 0) = @ (2, 2, a),
(25) G (.2,030) = g (1,2, 0).

The case when p = 0 of the assertion (2.1) gives us a new generalization of the zeta
function ®) ,..,, in the form:

NI _ = (8)m (1) ma™
2:6) BAWH0) = D G mi(a e

m=0

(Jz| < 1;{6,p,v} € C\ Zg, A€ C\{0};a € C\ {-Am},m e NU{0}).
In the case when A = p = 0, we have simply

1N (@ (8)m (1)

S (1 0o 0) — a— m®
(2.7) Cu,?(x,l,a,()) =a (V)m(a+1),m!’

m=0

which implies the next result.

Corollary 2.1. Let |z| < 1,%(a) > 0. Then

2.8 Qa’“ z:1,a;0) = a '3F[a, 8, wa+ 1, v 2],
v,1

where 3F5 is the generalized Gaussian hypergeometric function of one variable (cf.
[29]).

Corollary 2.2. Let A =0, |z| < 1. Then

(2.9) b (w52, a:p) = a *F, (8, v ).
Proof. We have

B(p+m,v —p;p) (8)ma™
B(p,v — p) mla

(o]
1
b (@ z,ap) = Y

m=0

Then by considering the extended Gaussian hypergeometric function F), (see Eq.
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(1.11)), we get (2.9). O

Further, we recall the definition of the derivative operator D" (see e.g. [22]):

re+m) 54

m_0+m—1 __
(2.10) DMz - =)

= (0)ma®~t,m e Ny.
Now, from (2.10) it is not difficult to infer the following interesting relation

Corollary 2.3. Let %(6) > 0,A =0, |z| < 1. Then

(2.11) szg(x; z,a;p) = xl_‘stI)p (3 v; Dyx) 2°7 1,

where @, is the extended confluent hypergeometric function defined by (1.12).
Proof. We refer to the proof of (2.9). d

Further, with the help of Euler’s integral [10]
(oo}
(2.12) a*T(z) = / e = tdt,
0
and Hankel’s integral [13,p.32(1.5.1.5)]:

(2.13) i/ b= O gp — -

- Z_
omi ), (5+m)”"€NO"S7é 0>

we can derive the following connections of the extended Hurwitz-Lerch zeta function
Oyt
Cl/ A

Corollary 2.4. Let R(6) > 0,R(z) > 0, |x| < 1. Then

1 oo
(2.14) F(Z)/O e IR (ve M, — 2, a; p)dt = F (0, ;13 )
*T(6
(2.15) GT(_) /ett_gcg’g(xt_l; zya;p)dt = @, (pyv; ).
LU ’

Proof. The results (2.14) and (2.15) follow directly from the formulas (2.12) and
(2.13) respectively. O

Furthermore, putting 6 = a+ (5 in (2.1) and using the classical formula of Norlund
for the Pochhammer symbol (cf. [3, Section 1, Chapter 3] ):

k

(2.16) (@+b)r=> (:L) (@) (B)m,

m=0
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we find the form (2.1) that

= B(p+m,v—up) ()
a+B,my .. /’L ;i p m
Tz, a;
Gz ) E% Blu,v—p)  (atAm)
_m7B; xm
(217) X 2F1 1 7' .
m!
1l—a—m;

Since
: ™ m
|H&{me}x

for bounded x and m € Ny, we infer the following confluent form of the function

G
(2.18)

) = B(p+m,v — u;p) x™

1 Oyt _ KB )
|5|1inoo{<“(6zap)} G (3.2, 4:) 2:0 B(p,v—p)  mi(a+ Am)?

3. Integral Images of CUA((E z,a;p)

First, by using the results
1 o m
(3.1) a+Am) ™ = —/ ze M) T lem L,
( ro ), @)
and
(3.2) () m = L /°° uS ey,
I'(6) Jo

which follow from the Eulerian integral(2.12) and exploiting the integral represen-
tation of the extended beta function B(z,y;p)[6]:

e o] r—1
_ U _
(3.3) B(z,y;p) =€ 2”/0 At ey P [—p(u+u™")] du,

we can derive the following triple integral image of Cg’f\‘:

Theorem 3.1. Let min{R(a), R(z), R(5), R(x)} > 0. Then

s ootzlulél _(at+s)
iz = g [ [T [T

(3.4) werru ) o () gudsar,




On Extended Hurwitz-Lerch Zeta Function 493

Proof. Given the definitions (2.1) and (3.3), it is easily seen that

uu+m 1

67 . . —
WAlr 2050 = 50, Z/ a5 [=plu )]

() ma™

% m!(a + Am)? du.

(3.5)

Now, with the aid of the results (3.1) and (3.2) and by interchanging the order
of summation and integration, equation (3.5) gives us the right-hand side of the
assertion (3.4). O

Now, we processed to derive integral connections between Cg’f\” and the functions F},
*
and (I)m \-

Theorem 3.2. Let min{R(a), R(5),R(u)} > 0. Then

1 o0
(3.6) Ci:ﬁ(m; z,a;p) = ) / e " E, (6,,u; v; xe"\f’) dt,
0

I(2)

[(v)e= 2P o0 gn—l
O (a2, ap) = / exp [—p(s + s
Az ap) o Jo Trap P lpetsT)]

(3.7) XD | <1afsza) ds.

Proof. To prove the formulas (3.6) and (3.7), we employ the integral relations (2.12)
and (3.3) respectively, and exploit the same procedure leading to (3.4).0

Next, utilizing the integral images of the generalized extended Euler’s beta function
(1.10),(1.13), and (1.14) we can derive the following results.

Theorem 3.3. Let R(a) > 0 and R(z) > 0. Then

(3.8
<6

)
Mz, a;p) = 1/1 11—t Lexp I 5 (xt, z,a)dt
pAYT T B(p, v —mu) J, t(1—t)| A7 ’

™

=X ’ cos 0)%# 71 (sin )" =M =1 exp (—psec? O esc? 6
B(p, v — p) /0 (cos6)™ (sin) ( )

(3.9) x5\ (v cos? 0, z, a)dt,
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2171/ oo
Cg:f\‘(x; z,a;p) = m [m(cosh x)¥ exp [—(a:u + 4p cosh? x)]

(3.10) x®5 \(rcoshx e™”, 2, a)dzx.
Proof. The results follow directly from the formulas (1.10), (1.13), and (1.14) re-
spectively. (]

Further, we shall prove Ci’ % as an application of the Mellin-Barnes type integral.
Our starting point is the formula (see [30, section 14.51,p.289, Corollary]; also see
[17]):

_ 1 I'(z+v)I'(—v)(—w)
3.11 l—w)2=-—— dv,
(3.11) (1-w) 27t J, I'(z) Y
where z and w are complex with R(z) > 0,]arg(w)| < 7m,w # 0, and the path is
the vertical line from ¢ — 900 to ¢ + ico. This formula in [30] is stated with ¢ = 0,
(with suitable modification of the path near the point z = 0), but it is clear that
the formula is also valid for —R(z) < ¢ < 0.

Theorem 3.4. Let R(z) > 0,%(a —b) > 0,R(b) >0, |z| < 1. Then

b””/(F(V+Z)F(V) 5.\

2mi I'(z) e

Proof. Let w = (b—a — Am)/b in (3.11) and multiply both the sides by

B(p+m,v —p) (§)ma™

B(/L,V—,LL) m 7(m€N0)a
to obtain
B(p+m,v—pu) (0)ma™ —z
(o™ S )t am)

(T(w+2)T(-v) B(p+m,v—p) (8)ma™

B d > 0.
/c I'(2) X Blu,v—p) mi(a—b+ xm)v v,m >0
Therefore, if we assume (1~ R(v) < ¢ < 1, then from (2.1), we get (3.12)0.

Furthermore, by using the Mellin transform representation of the extended beta
function B(z,y;p) in terms of Mellin-Barnes type contour integral [9]:

p°ds,

y+ioco S €T S S
(3.13) B(z,y;2,a;p) = %/_ = )rl;i —|—+y J)FF2(§)+ )
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we have the following complex integral representation for Cg’f{ (z;2,a;p).

Theorem 3.5. Let R(p) > 0,m >0 and v > 0. Then
(3.14)

1
211

(z;2,a)ds.

Sttaisaip) = oo [ TGt T O 0) g
y—100

F(/'L)F(V - M)F(TLU + 23) p v+2s,A

where ° o is zeta function defined by (2.6).

Proof. Uslng the formula (3.13) in the definition (2.1), interchanging the order of
summation and integration, and considering the definition (2.6), we led to the de-
sired result (3.14). O

Now, with help of the limiting case (2.18), we establish the next integral image.

Theorem 3.6. Let R(p) > 0,|z| < 1. Then

1 (o9}
(3.15) (g:ﬁ(x;z,a;p) = m/o u’~! "¢y \(zus; 2, a;p)du.

Proof. The result follows directly from the definition (2.1) and the formula (3.2).0

4. Differentiation Formulas of ()} o

The extended Hurwitz-Lerch zeta function (¢} (G ), as a function satisfies sev-
eral differential relations. Fortunately these propertles of C " can be developed
directly from the definition (2.1). In this section, we will find the differentiation

of the function Cg’ﬁf concerning arguments x, z, A, d,a and p. Firstly, we recall the
following result [22]

I'n+1)

4.1 Drat = 2T
(4.1) w @ F'n—m+1)

""" n—m>0,D, = i
dx
Theorem 4.1. Let k € N. Then

(6)k(1)k
(V)k

(4.2) Dy {C‘jjﬁ(x; z, a;p)} = COIun T (@5 2,0+ Me; p),
(4.3) DE{ G @z aim) b = (~)F ()i (s = + Ky aip).

Proof. Using (4.1), we get

o0

k d, . B M—i—m vV — U p) (5)mxm—k
(4.4) Dy {Cu,ﬁ(:v, z,a;p } Z:O B(p,v—p)  (m—k)(a+Im)*’
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Now, letting m — m + k in (4.4) and considering the definition (2.1), we get the
right-hand side of the formula (4.2). Similarly, one can prove the formula (4.3). O

According to the relation (2.2), formula (4.3) reduces to the result

(4'5) DSC(ZJI) = (—1)k(z)k<(z+k,a),

which is a known result ( see e.g. [12,p.2(1.8)]). Given the relationship (2.5), we
find from equation (4.3) that

(4.6) DE{®s 0 (2, 2,0)} = (1) (2)i@s s (2,2 + K, ).

6)\

Secondly, we show that the extended Hurwitz-Lerch zeta function satisfies the

following differential relation.

Theorem 4.2. Let {(6 — k),(u—k),(v — k)} # Zy ,k € Ng. Then

(L= )k 5—k,u—k
(1—08)r(1— p) : GiN (@z,0 — Mesp) |

Proof. Let I denote the right-hand side of the assertion (4.7). Then given (2.1) and
(4.1) we have

7)) Chazap) = (—1)F

48) I=

(—1)k 1—1/ Z B(p+m —k,v—p;p)(0 — k)paz™Fk
(1—p) B(p,v — p)(a — Mk + Am)z(m — k)|

Now, by letting m = m + k and using the identities

(1 — V)k
4.9 Blu—kv—p) = 2 Buv—p),
(4.9) (1 14) A= 0% (1, v — )
and

(=n"

4.1 = ,
(410) O
we led to the left-hand side of (4.7) O

Next, we establish the derivative of the function Cif\‘ with respect to the argument .

Theorem 4.3. Let b € R. Then

i gﬁ( —1,a 4 A\b;p)
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g '
@11 == [ () G wma+ A0+ i) + R+ )
Proof. We have
%(g:’;)(x; z—1,a+ Ab;p)

m

=(1-2)

- B(p+m, v — 1;p)(0) ma
mz:l B(p,v— p)(m — 1) (a+ Am +b))?

m

B(p+m,v— ;p)(0)me
(4.12) +b Z B(p,v — p)ml(a + X(m +b))* |

Now , let m — m + 1 in the (4.13) and then use the identity

(/”')m+k = (M)k(/,t + k)ma

to obtain (4.11). O

The same type of differentiation gives the next result.

Theorem 4.4. Let g € R. Then
0
(4.13) a—q(iﬁ(m, z—1,a+bg;p) =b(1 — z)(jg’;(m, z,a + bg; p).
Proof. 'We refer to the proof of assertion (4.11). O

Because of relation (2.5), the assertion (4.13) gives the result

0
(4.14) a—qd)(;,my(a:; z—1,a+bq) = b(1 — 2)Ps (73 2,0 + bg).
Also, it is easily observed that the differential relation (4.13) is a generalization of
the known result (see e.g. [11,p.451(2.2)]):

(4.15) %C(z —1,a+gb) = b(1 — 2)((z,a + ¢b).

Closely associated with the derivative of the gamma function is the digamma func-
tion defined by (see e.g.[20])

(4.16) P(x) = %hﬂ“(aj) = II“((;C)),J; #0,—1,-2,---.
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Now, we establish the derivative of the function Cﬁ’ﬁ with respect to the parameter 0.

Theorem 4.5. Let 6 € C\ Z; . Then

9 oy .
%CV’A(J"? 2, aap)

(4.17)

i B(p+m,v—p;p)  (6)mz™

g, . .
Biv—p)  (a+ampm VO™ - ()R (w3 2, a3 p).

m=0

Proof. By noting that

(4.18) 0 0 [F((S—&-m)

55 1001 = 55 | "] = @ wte + m) - vio,
we obtain the result (4.17)C.

Further, let us recall the definition of the Weyl fractional derivative of the exponen-
tial function e~% a > 0 of order v in the form (see [22,p.248(7.4)]):

(4.19) DY {e=*} = a"e™* (v not restricted to be positive integer).
We now proceed to find the fractional derivative of the function CS:f\L concerning z.

Theorem 4.6. Let v > 0. Then

DY {iji(w;z,a;p)}

_ i B(u+m,v—p5p)  ()ma™

(420) B(p,v—p)  ml(a+ Am)

— x [log(a + Am)]”.

m=0
Proof. Since
(CL + )\m)fz — eleog(aJr)\m),

we have

Zw B(p+m,v — p;p) (§)ma™
O, . — ’ ) m zlog(a+Am)
CV’)\(x,z,a,p) - B(M,V*ILL) m' € .

m=0

The desired result now follows by applying the formula (4.19) to the above identity.
O

Finally, it is interesting to note that the k — th derivative of the extended zeta
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function Cﬁ’i concerning the parameter p is given by the following theorem.

Theorem 4.7. Let kK € N. Then

(4.21) Dk {CVA(x z,a; p)} (— 1>kB(HB_(E:Z_Z)_ k)CSHQkk)\(x z,a;p).

Proof. From definitions (2.1) and (1.10) and the formula (4.1), we can state that
(4.22)

= B(p+m—kv—p—kp) (6)mz™
Dk iy k .
{Cy)\(x z ap)} 2:0 B(/«Lyl/_ﬂ) '(a+>\m)z

Now, by interpreting the above series in the form of the definition (2.1), we obtain
the desired result (4.21). O

5. Series Involving Cg’f{

The purpose of this section 1s to establish some series relations for the extended
bivariate series zeta function C First, based on the two forms of Taylor’s the-
orem for the deduction of addltlon and multiplication theorems for the confluent
hypergeometric function (cf.[13,p.63, Equations(2.8.8) and (2.8.9)] or [28,p.21-22]):

(5.1) (z+v) Z 7 (2
and

o my (o Ly — D)™
(5.2) flzy) = Z f( )(I)T’
m=0
where |y| < p, p being the radius of convergence of the analytic function f(x), we
aim to discuss certain addition and multiplication theorems of the extended bivari-

ate zeta function (g’ﬁ

Theorem 5.1. Let |w| < 1. Then

o] k'
S, k: 5+k pnt+k
(5.3) G +wiz,a;5p) = kz_o o Coiry (x—l—wza—i—)\kp)k',
(54)  hlwiznap =3 ()(’;()’Z”“cfi’;;*;*’%z(w ;7 a4 Mip) T
k=0
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Proof. The proof is a direct application of the formulas (5.1),(5.2), and the first
result of Theorem 4.1. O

Next, we derive the Taylor expansion of Cf’f\L in the fourth variable a.

Theorem 5.2. Let |w| < R(a).Then

o0 oo Z
(6:5) 3 Ohlaszat bt wiply = (1 B2+ k) x b, ) O
k=0 k=0

Proof. We have

(5 6)

_ !
== B(u,v u) m! a+k

The result now follows from the binomial expansion and the definitions (1.3) and
(2.1). O

Equation (5.5) gives several known and new series expansions as particular cases.
For instance, because of the relation (2.3), we find from (5.5) that

> k

w
5.7 P )P ( k,a)—
(57) (204 0) = 30 + R

(2 # L|w| <la),

which is a known result due to Raina and Chhajed [27,p.93(3.3)]. Moreover accord-
ing to the relationship (2.2), equation (5.5) yields

o0

wk
(5.8) (2,0 +w) = 2(71)’6(@,@4(”1{,@)?.

k=0

Note that, formula (5.8) is a known result due to Kanemitsu et al. [16,p.5(2.6)].
Furthermore, if in (5.7) we let y = 2™ (in conjunction with (1.4)), formula (5.7)
reduces to a known power series expansion due to Klusch [18]:

o0

(5.9) Ploya+w,z) =Y (~1)F(2)rd(a,a,2 + k)w*, w| < a.

k=0

©)

Another expansion function for C:’(f’ can be derived by using the result [20,p.374,

Exercise 9.4(7)]:

(1- \/5)—20, .

l\')\)—l

(5.10) o Fy [a a+ (1+vz)~”

N)\)—l
l\.')\)—l
%I
w\}—*
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Theorem 5.3. Let > 1, Re(a) > 0,|z| < 1,|y| <1 and |w| < |a|. Then

Z (Z+;:_1>C5”( i 2+ 2k, a; p)w?

k=0

(5.11) = [z a+wip) + Chi@iza—wip)]-

N | =

Proof.We have
> 2k — 1
E <Z+2Z )C‘S“(gc 2+ 2k, a; p)w?

k=0
= Blptmy—pip)  (O)mr™ g~ (2)apw?
(5.12) = Z Bp,v—p)  ml(a+ Am)? kZ:: (2k)!(a + Am)2k

By applying the formula (5.10) to the last summation on the right-hand side of the
equation (5.12), we led to the result (5.11). O

K

Next, we derive a series expansion for the extended zeta function Cl‘i \ involving
Apple’s hypergeometric function of two variables Fy defined by the series ( see e.g.
[29]):

oo

m-Tn b m b n Yy
(5.13) Fyla, by, bo;cr, o5,y = Y @) (;)( 1()02)( ;?Ll;fl =,

m,n=0

maz{|z|, [y|} <1.

Theorem 5.4. Let |b] < R(a) and X\ # 0.Then

oo k o0

o B(p+m,v — p;p) (§)ma™

—-m  w

5.14 Fylzv 12,1 —, ——
(5.14) X 2{21/ z i

}m+mz.

Proof. Since

(a+b+4+xm)~ TR = (g 4 p)~G+R) (1 -

it follows that

0 wk

Z ky/\xz+k a+bp)
k=0
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_ = Blpt+my—pp) (6)ma™
N E:O By, v —pu)  ml(a+0b)?

(5.15) XZZ k.’;ﬁ"z(f,f'“ <a:)-b>k (ain;)n

k=0n=0

The result (5.14) now follows from the definition (5.13). O

Indeed, for x = p = b = 0 equation (5.14) reduces to the well-known result of
Ramanujan ( see [26] or [24,p.396(6)]):

(z,a — Zk—) C(z+k,a)w™(Jw| <la|,z #1).

Moreover, we give a representation of the extended zeta function C in terms of
Laguerre polynomials. We start by recalling the useful identity used i in (23]

(5.16) elratn) = =2 Z L(p)mL(p)nt™ (1 — )" ]| < 1.

m,n=0

Theorem 5.5. Let {6,,v} € C\Z5,A € C\ {0};a € C\ {~(Am)},R(p) > 0
Then

i i B(u+d+m+1,v—p+r+1)

LT .
C”’A(x’ 20:p) = m!(a + Am)?

NaV*

m:O s,r=0

(5.17) x(8)sLs(p)Lr(p)x™.

Proof. Using (5.16) in (3.8), employing the series expansion of the zeta function
¢¢ and interchange the order of integration and summation, we obtain the result
(5.17). O

According to the definition of beta function (see Eq. (1.9)), the assertion (5.17)
can be rewritten in the following alternative form:

oAz aip)

=20 (y — = +1)(v—pu+1),.Ls(p)L, s
(5.18) = °© NI(/V 1) 3 (1 )(V(vil)slr (p) (p)cfi‘ijju(w;z,a).

s,r=0
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Now, we turn to derive two generating functions for the function Cﬁ’ﬁ .

Theorem 5.6. Let |w| < 1,R(p) > 0. Then

> Sy W —5 49, x )
(5.19) ;whcu,k H(x,z,a,p)m =1 -w) N (1 — z,a,p) ,
(5.20) N @nCh @52+ naasp) Sy = (O (22,0 — wip).

70 ’ n: ’

Proof. We have

N B(p+m,v—pwp) |- W™ ™
_WZ:O((S)m B(M7V_M) {Z(6+m)nn|}7nl(a+/\7n)z

Now, on applying the result

e tm
1-)""= Z(A)mm(lt\ <1),
m=0
we obtain the generating function (5.19). Again, starting from the right-hand side
of the assertion (5.20), we can state that

= B(p+m,v— 1;p) (8)ma™ w - .
LT ) — } : _
Cl/,)\ (xa Z,Q W,p) ot B('LL, v ‘LL) m! a+ Am (a + )\m) .

Now, by exploiting the same procedure leading to (5.19) we obtain the assertion
(5.20). d

6. Probability Distribution of ()%

As in the theory of probability, we introduce the following definition.

Definition 6.1. A random variable £ is said to be extended generalized Hurwitz
distributed if its probability density function is given by

205 (wiz+1,a;p)
(6.1) fela) = G (wzlip)
0 (otherwise),

(a>1)

where it is tacitly assumed that the arguments z, z and p and the parameters 6, u, v,
and A are fixed and suitably constrained so that the probability density function
fe(a) remains nonnegative.
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Theorem 6.1. Suppose that & is a continuous random variable with its probability
density function defined by (6.1). Then the moment generating function M(t) of
the random variable £ is given by

tn
n!

M(t) =E, [¢"] = ) E.[£"]
n=0

with the moment E, [€"] of order n given by

n

Z n! T(z—k) Cﬁj&‘ (z;2 =k, 1;p)
( :

6.2 E. [€"] =
(6.2) [€"] =kl TG (e 1p)

k=0

Proof. The assertion in (6.1) can be derived easily by using the exponential series
for e¢. On the other hand, since

d NV . _ Softf .. .
(6.3) Ta {Cy7k(gc,z7a,p)} = —zQ,\(z;2 + 1,a;p),

which follows readily from the assertion (4.3), if we make use of integration by parts,
we find from the definition of the moment F.[¢"] that

BN = [ @ feladda= S [ an G (wia ot Laip) da
1 N (52, 1;p) N1

1 /OO n d C&,#( )d
————— [ a"—=(K (w52,0;p) da
Cg’i (x7271,p) 1 da 70N 32,43

9, oo
a”(yN (w52, a5 p)
——
CV»&L (z;2,1;p) a=

o]
></ a"_lcjgz‘)f(x;z,a;p)da
1

)
T oA (732,05 p) N n
a=oo | (K (252, 15p) G4 (w32, 1;p)

o0
></ a"_lcjgz‘)f(x;z,a;p)da
1

n

5,
L G (@2 1p)

n = a1,
(6.4) :1+§‘5";(3:'z1'p)x/1 a 1y7§($;z,a;p)da (n e N),

where, in addition to the derivative property (6.3), we have used the following limit
formula (see Eq. (3.6)):
lim {a”{f’f\‘ (z; z, a;p)}

a—» 00
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n o0
= lim {1:1(2’)/1 e_attz_le (5,M;V;$6_/\t) dt}

(6.5) = —) / lim {a"e‘“t} tz_le (5,u; v; xe_M) dt = 0.
1

a— o0

Consequently, we have the following reduction formula for F,[¢"]:

oA (z2—1,1p) n

G
. E.[¢"] =
(6.6) ["=1+ Tty -1

Ezfl[gn_l]'

By iterating the recurrence (6.4), we arrive at the desired result (6.2) asserted by
Theorem 6.1. Note that, a special case of Theorem 4.1 when A = 0 was considered
by Parmar and Raina [25]. O
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