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Abstract. In this paper, we study the fixed point property for generalized asymptoti-

cally nonexpansive mappings in the setting of p-Hadamard spaces, with p ≥ 2. We prove

the strong convergence of the sequence generated by the modified two-step iterative se-

quence for finding a fixed point of a generalized asymptotically nonexpansive mapping in

p-Hadamard spaces.

1. Introduction

Let (X, d) be a metric space and x, y ∈ X. A geodesic joining x to y is a map
γ from the closed interval [0, d(x, y)] ⊂ R to X such that γ(0) = x, γ(d(x, y)) = y
and d(γ(t1), γ(t2)) = |t1 − t2| for all t1, t2 ∈ [0, d(x, y)]. The image of γ is called
a geodesic segment joining x and y. When it is unique, this geodesic segment is
denoted by [x, y] and we write αx⊕ (1− α)y for the unique point z in the geodesic
segment joining from x to y such that d(x, z) = (1−α)d(x, y) and d(y, z) = αd(x, y)
for α ∈ [0, 1]. The space (X, d) is said to be a geodesic metric space [2] if every two
points of X are joined by a geodesic, and X is said to be uniquely geodesic if there
is exactly one geodesic joining x and y for each x, y ∈ X.

A geodesic triangle △(x1, x2, x3) in a geodesic metric space (X, d) consists of
three points x1, x2, x3 in X and a geodesic segment between each pair of vertices.
A comparison triangle for the geodesic triangle △(x1, x2, x3) in X is a triangle
△(x1, x2, x3) := △(x̄1, x̄2, x̄3) in R2 such that dR2 (x̄i, x̄j) = d(xi, xj) for i, j ∈
{1, 2, 3}. Let △ be a geodesic triangle in X and △ be a comparison triangle for △
in R2. Then △ is said to satisfy the CAT(0) inequality if for any x, y ∈ △ and their
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comparison points x̄, ȳ ∈ △, the following holds,

d(x, y) ≤ dR2(x̄, ȳ).

A geodesic metric space (X, d) is said to be a CAT(0) space if all geodesic triangles
satisfy the CAT(0) inequality. It is well known that any complete, simply connected
Riemannian manifold having nonpositive sectional curvature is a CAT(0) space; see
more details in [2]. Other examples include Euclidean spaces, Hilbert spaces, the
Hilbert ball [7], R-trees [17], and many others.

In 2017, Khamsi and Shukri [9] introduced the concept of CATp(0) spaces based
on the idea that comparison triangles belong to a general Banach space instead of
the Euclidean plane as follows:

Definition 1.1. Let (E, ∥ · ∥) be a Banach space. A geodesic metric space (X, d)
is said to be a CATE(0) space if for any geodesic triangle △ in X, there exists a
comparison triangle △ in E such that the comparison axiom is satisfied, i.e., for all
x, y ∈ △ and all comparison points x̄, ȳ ∈ △, we have

d(x, y) ≤ ∥x̄− ȳ∥.

If E = lp, for p ≥ 1, we say X is a CATp(0) space.

It is obvious that CAT2(0) space is exactly the classical CAT(0) space, which
has been extensively studied.

Let x, y, z be in a CATp(0) space X, with p ≥ 2, and x⊕y
2 is the midpoint of

the geodesic [x, y]. Then the comparison axiom implies

d

(
z,

x⊕ y

2

)p

≤ 1

2
d(z, x)p +

1

2
d(z, y)p − 1

2p
d(x, y)p.(1.1)

This inequality is the (CNp) inequality of Khamsi and Shukri [9]. Note that the
(CNp) inequality coincides with the classical (CN) inequality [4] if p = 2. Below are
some strong inequalities in a CATp(0) space.

Lemma 1.2.([1, 5]) Let (X, d) be a CATp(0) space, with p ≥ 2. Then, for any
x, y, z in X and α ∈ [0, 1], we have

(i) d(z, αx⊕ (1− α)y) ≤ αd(z, x) + (1− α)d(z, y);

(ii) d(z, αx⊕ (1− α)y)p ≤ αd(z, x)p + (1− α)d(z, y)p − 1
2p−1α(1− α)d(x, y)p.

Let C be a nonempty subset of a CATp(0) space (X, d). A subset C of X is
said to be convex if C includes every geodesic segment joining any two of its points,
that is, for any x, y ∈ C, we have [x, y] ⊂ C.

A complete CATp(0) space is called a p-Hadamard space. Throughout our work,
we mainly focus on p-Hadamard spaces for p ≥ 2.

Let T be a mapping of C into itself. An element x ∈ C is called a fixed point
of T if x = Tx. The set of all fixed points of T is denoted by F (T ), that is,
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F (T ) = {x ∈ C : x = Tx}. A sequence {xn} in C is called approximate fixed point
sequence for T (AFPS in short) if limn→∞ d(xn, Txn) = 0.

The famous fixed point theorem for nonexpansive mappings in Banach spaces
have first studied by Browder [3]and Göhde [8] in 1965 as follows:

Theorem 1.3. Let X be a uniformly convex Banach space and C be a nonempty
bounded closed convex subset of X. Then, each nonexpansive mapping T : C → C
has a fixed point.

In 1972, Geobel and Kirk [6] extended their result to asymptotically nonex-
pansive mappings. Later in 2004, Kirk [10] obtained a similar result for complete
CAT(0) spaces. In 2013, Phuengrattana and Suantai [12] extended those result
to generalized asymptotically nonexpansive mappings and to complete uniformly
convex metric spaces as follows:

Theorem 1.4. Let (X, d) be a complete uniformly convex metric space. Let C be
a nonempty bounded closed convex subset of X and T : C → C be a generalized
asymptotically nonexpansive mapping whose graph G(T ) = {(x, y) ∈ C × C : y =
Tx} is closed. Then, T has a fixed point.

In this work, we extend some known existence and convergence results for gen-
eralized asymptotically nonexpansive mappings in Hadamard spaces to the case of
p-Hadamard spaces, for p ≥ 2.

2. Preliminaries

Let C be a nonempty subset of a CATp(0) space (X, d) and T : C → C be a map-
ping. A mapping T is said to be generalized asymptotically nonexpansive [12, 15]
if there exist sequences {kn} ⊂ [1,∞) and {sn} ⊂ [0,∞) with limn→∞ kn = 1,
limn→∞ sn = 0 such that

d (Tnx, Tny) ≤ knd(x, y) + sn,

for all x, y ∈ C and n ∈ N. In the case of sn = 0 for all n ∈ N, a mapping T is
called an asymptotically nonexpansive mapping. In particular, if kn = 1 and sn = 0
for all n ∈ N, a mapping T reduce to a nonexpansive mapping.

Remark 2.1. If T is a generalized asymptotically nonexpansive mapping, it is
know that F (T ) is not necessarily closed; see [13].

Recall that ϕ : X → [0,∞) is called a type function if there exists a bounded
sequence {xn} in X such that

ϕ(x) = lim sup
n→∞

d(xn, x),

for any x ∈ X. A sequence {zn} in X is said to be a minimizing sequence of ϕ
whenever

lim
n→∞

ϕ(zn) = inf{ϕ(x) : x ∈ X}.
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Lemma 2.2.([9]) Let (X, d) be a p-Hadamard space, with p ≥ 2. Let C be a
nonempty bounded closed convex subset of X and ϕ be a type function defined on
C. Then any minimizing sequence of ϕ is convergent and its limit z is the unique
minimum point of ϕ, i.e., ϕ(z) = inf{ϕ(x) : x ∈ C}.

The following results are needed for proving our convergence results.

Definition 2.3.([11]) A mapping T : C → C is said to be semi-compact if C is
closed and each bounded AFPS for T in C has a convergent subsequence.

Definition 2.4.([14]) A mapping T : C → C is said to satisfy the condition (I) if
there exists a nondecreasing function ρ : [0,∞) → [0,∞) with ρ(0) = 0 and ρ(r) > 0
for all r ∈ (0,∞) such that

d(x, Tx) = ρ(dist(x, F (T )))

for all x ∈ C, where dist(x, F (T )) = inf{d(x, z) : z ∈ F (T )}.

Definition 2.5.([13]) Let {xn} be a sequence in a metric space (X, d) and F ⊂ X.
We say that {xn} is of monotone type (I) with respect to F if there exists sequences
{δn} and {γn} of nonnegative real numbers such that

∑∞
n=1 δn < ∞,

∑∞
n=1 γn < ∞,

and

d(xn+1, z) ≤ (1 + δn)d(xn, z) + γn

for all n ∈ N and z ∈ F .

Lemma 2.6.([13]) Let {xn} be a sequence in a complete metric space (X, d) and F ⊂
X. If {xn} is of monotone type (I) with respect to F and lim infn→∞ dist(xn, F ) = 0,
then limn→∞ xn = z for some z ∈ X satisfying dist(xn, F ). In particular, if F is
closed, then z ∈ F .

Lemma 2.7.([18]) Let {an}, {bn} and {cn} be sequences of nonnegative real num-
bers satisfying

an+1 ≤ (1 + bn)an + cn, n ∈ N,

where
∑∞

n=1 bn < ∞ and
∑∞

n=1 cn < ∞. Then limn→∞ an exists.

3. Existence Theorems

In this section, we study the existence theorems for a generalized asymptotically
nonexpansive mapping in p-Hadamard spaces.

We now state and prove our existence results.

Theorem 3.1. Let (X, d) be a p-Hadamard space, with p ≥ 2. Let C be a nonempty
bounded closed convex subset of X and T : C → C be a generalized asymptotically
nonexpansive mapping whose graph G(T ) = {(x, y) ∈ C × C : y = Tx} is closed.
Then, T has a fixed point.
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Proof. Fix x ∈ C. Consider the type function ϕ generated by the bounded se-
quence {Tnx}. Let z be the minimum point of ϕ which exists by using Lemma 2.2.
Therefore,

d
(
Tn+mx, Tmz

)
≤ kmd(Tnx, z) + sm,

for any n,m ∈ N. Taking n → ∞, we get

ϕ(Tmz) ≤ kmϕ(z) + sm = km inf{ϕ(x) : x ∈ C}+ sm,

for any m ∈ N. Taking m → ∞, we get

lim
m→∞

ϕ(Tmz) ≤ inf{ϕ(x) : x ∈ C}.

Since z is the minimum point of ϕ, it implies that limm→∞ ϕ(Tmz) = inf{ϕ(x) : x ∈
C}. Thus, {Tmz} is a minimizing sequence of ϕ. By Lemma 2.2, we obtain that
Tmz → z as m → ∞, and so T (Tmz) = Tm+1z → z as m → ∞. By the closedness
of G(T ), we have Tz = z. This completes the proof. 2

Theorem 3.2. Let (X, d) be a p-Hadamard space, with p ≥ 2. Let C be a nonempty
bounded closed convex subset of X and T : C → C be a generalized asymptotically
nonexpansive mapping whose graph G(T ) = {(x, y) ∈ C × C : y = Tx} is closed.
Then, F (T ) is nonempty closed and convex.

Proof. By Theorem 3.1, F (T ) is nonempty. To show that F (T ) is closed, we let
{xn} be a sequence in F (T ) such that limn→∞ xn = x. By the definition of T , we
have

d(Tnx, x) ≤ d(Tnx, xn) + d(xn, x) ≤ (1 + kn)d(xn, x) + sn.

Since limn→∞ kn = 1 and limn→∞ sn = 0, we get limn→∞ d(Tnx, x) = 0. That is
Tnx → x as n → ∞, and so T (Tnx) = Tn+1x → x as n → ∞. By the closedness of
G(T ), we have Tx = x. Hence x ∈ F (T ) so that F (T ) is closed.

In order to prove F (T ) is convex, it is enough to prove that x⊕y
2 ∈ F (T )

whenever x, y ∈ F (T ) with x ̸= y. Set z = x⊕y
2 . By the (CNp) inequality and the

definition of T , for any n ∈ N, we have

d(Tnz, z)p = d

(
Tnz,

x⊕ y

2

)p

≤ 1

2
d(Tnz, x)p +

1

2
d(Tnz, y)p − 1

2p
d(x, y)p

=
1

2
d(Tnz, Tnx)p +

1

2
d(Tnz, Tny)p − 1

2p
d(x, y)p

≤ 1

2
(knd(z, x) + sn)

p
+

1

2
(knd(z, y) + sn)

p − 1

2p
d(x, y)p.

Since z = x⊕y
2 , we get that d(z, x) = 1

2d(x, y) and d(y, x) = 1
2d(x, y). So, we have

d(Tnz, z)p ≤
(
kn
2
d(x, y) + sn

)p

− 1

2p
d(x, y)p.



456 K. Juanak, A. Varatechakongka and W. Phuengrattana

By limn→∞ kn = 1 and limn→∞ sn = 0, we get limn→∞ d(Tnz, z)p = 0. This
implies that Tnz → z as n → ∞, and so T (Tnz) = Tn+1z → z as n → ∞. From
the closedness of G(T ), we have Tz = z. Therefore, F (T ) is convex. This completes
the proof. 2

Next, we show that the existence of a fixed point of a generalized asymptotically
nonexpansive mapping in a p-Hadamard space is equivalent to the existence of a
bounded orbit at a point.

Theorem 3.3. Let (X, d) be a p-Hadamard space, with p ≥ 2. Let C be a nonempty
closed convex subset of X and T : C → C be a generalized asymptotically nonex-
pansive mapping whose graph G(T ) = {(x, y) ∈ C × C : y = Tx} is closed. Then
F (T ) ̸= ∅ if and only if there exists an x ∈ C such that {Tnx} is bounded.

Proof. The necessity is obvious. Conversely, assume that x is an element in C such
that {Tnx} is bounded. Consider the type function ϕ generated by {Tnx}. By the
same step of the proof as in Theorem 3.1, we can conclude that F (T ) ̸= ∅. This
completes the proof. 2

Remark 3.4.

(i) If T is generalized asymptotically nonexpansive, F (T ) is not necessarily
closed. However, if G(T ) is also closed, Theorem 3.2 guarantee that F (T ) is
always closed.

(ii) If T is continuous, then G(T ) is always closed. Therefore, Theorems 3.1,
3.2 and 3.3 are obtained for a class of continuous generalized asymptotically
nonexpansive mappings.

4. Convergence Theorems

In this section, we study the strong convergence theorems for a generalized
asymptotically nonexpansive mapping by the modified two-step iterative sequence
for finding fixed points of such mapping in p-Hadamard spaces. We now introduce
the modified two-step iterative sequence [16] as below:

Let C be a nonempty closed convex subset of a p-Hadamard space (X, d) and
T : C → C be a generalized asymptotically nonexpansive mapping. We generate
the sequence {xn} in C by x1 ∈ C and{

yn = βnxn ⊕ (1− βn)T
nxn,

xn+1 = αnyn ⊕ (1− αn)T
nyn, n ∈ N,

(4.1)

where {αn} and {βn} are sequences in [0, 1].

Now we prove the strong convergence results.

Lemma 4.1. Let (X, d) be a p-Hadamard space, with p ≥ 2. Let C be a nonempty
bounded closed convex subset of X and T : C → C be a uniformly continuous
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generalized asymptotically nonexpansive mapping with sequences {kn} ⊂ [1,∞) and
{sn} ⊂ [0,∞) such that

∑∞
n=1(kn − 1) < ∞ and

∑∞
n=1 sn < ∞. Let x1 ∈ C and

{xn} be a sequence in C defined by (4.1) where {αn} and {βn} are sequences in
(0, 1) such that 0 < a ≤ αn, βn ≤ b < 1. Then, we have the following:

(i) there exit two sequences {δn} and {εn} of nonnegative real numbers such that∑∞
n=1 δn < ∞,

∑∞
n=1 εn < ∞, and d(xn+1, z) ≤ (1 + δn)d(xn, z) + εn for all

n ∈ N and z ∈ F (T );

(ii) limn→∞ d(xn, z) exists for all z ∈ F (T );

(iii) {xn} is an AFPS for T .

Proof. (i) : By the uniform continuity of T , we have G(T ) is closed. It implies from
Theorem 3.1 that F (T ) ̸= ∅. Let z ∈ F (T ). Since T is generalized asymptotically
nonexpansive, by Lemma 1.2(i), we have

d(yn, z) ≤ βnd(xn, z) + (1− βn)d(T
nxn, z)

= βnd(xn, z) + (1− βn)d(T
nxn, T

nz)

≤ βnd(xn, z) + (1− βn)(knd(xn, z) + sn)

≤ (βn + (1− βn)kn)d(xn, z) + sn

=

(
βn

kn
+ (1− βn)

)
knd(xn, z) + sn.

Since 0 ≤ βn

kn
+ (1− βn) ≤ 1, we obtain

d(yn, z) ≤ knd(xn, z) + sn.(4.2)

This implies that

d(xn+1, z) ≤ αnd(yn, z) + (1− αn)d(T
nyn, z)

= αnd(yn, z) + (1− αn)d(T
nyn, T

nz)

≤ αnd(yn, z) + (1− αn)(knd(yn, z) + sn)

≤ (αn + (1− αn)kn)d(yn, z) + sn

=

(
αn

kn
+ (1− αn)

)
knd(yn, z) + sn.

Since 0 ≤ βn

kn
+ (1− βn) ≤ 1, by (4.2), we have

d(xn+1, z) ≤ knd(yn, z) + sn

≤ kn(knd(xn, z) + sn) + sn

≤ k2nd(xn, z) + knsn + sn

= (1 + (kn − 1))2d(xn, z) + (1 + (kn − 1))sn + sn

= (1 + 2(kn − 1) + (kn − 1)2)d(xn, z) + (kn − 1)sn + 2sn

= (1 + δn)d(xn, z) + γn,
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where δn = 2(kn−1)+(kn−1)2 and γn = (kn−1)sn+2sn. Since
∑∞

n=1(kn−1) < ∞
and

∑∞
n=1 sn < ∞, it follows that

∑∞
n=1 δn < ∞ and

∑∞
n=1 γn < ∞. Hence, we

obtain the desired result.

(ii) : By (i) and Lemma 2.7, we obtain that limn→∞ d(xn, z) exists.
(iii) : By Lemma 1.2(ii) and (4.2), we have

d(xn+1, z)
p ≤ αnd(yn, z)

p + (1− αn)d(T
nyn, z)

p − αn(1− αn)

2p−1
d(Tnyn, yn)

p

≤ αn

(
βnd(xn, z)

p + (1− βn)d(T
nxn, z)

p − βn(1− βn)

2p−1
d(Tnxn, xn)

p

)
+ (1− αn)(knd(yn, z) + sn)

p − αn(1− αn)

2p−1
d(Tnyn, yn)

p

≤ αnβnd(xn, z)
p + αn(1− βn)(knd(xn, z) + sn)

p

+ (1− αn)(k
2
nd(xn, z) + knsn + sn)

p − αnβn(1− βn)

2p−1
d(Tnxn, xn)

p

− αn(1− αn)

2p−1
d(Tnyn, yn)

p.(4.3)

Since kn ≥ 1 and sn ≥ 0, we have

d(xn, z) ≤ knd(xn, z) + sn ≤ k2nd(xn, z) + knsn + sn.

Then, by (4.3), we have

d(xn+1, z)
p ≤ (k2nd(xn, z) + knsn + sn)

p − αnβn(1− βn)

2p−1
d(Tnxn, xn)

p

− αn(1− αn)

2p−1
d(Tnyn, yn)

p.

This implies that

d(Tnxn, xn)
p ≤ 2p−1

a2(1− b)

(
(k2nd(xn, z) + knsn + sn)

p − d(xn+1, z)
p
)
,

and

d(Tnyn, yn)
p ≤ 2p−1

a(1− b)

(
(k2nd(xn, z) + knsn + sn)

p − d(xn+1, z)
p
)
.

By limn→∞ kn = 1, limn→∞ sn = 0 and limn→∞ d(xn, z) exists, we conclude that

lim
n→∞

d(Tnxn, xn) = 0,(4.4)

and

lim
n→∞

d(Tnyn, yn) = 0.(4.5)
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By (4.4) and the uniform continuity of T , we have

lim
n→∞

d(Tn+1xn, Txn) = 0.(4.6)

By the definitions of xn+1 and yn, we obtain

d(xn, Txn) ≤ d(xn, xn+1) + d(xn+1, T
n+1xn+1) + d(Tn+1xn+1, T

n+1xn)

+ d(Tn+1xn, Txn)

≤ (1 + kn+1)d(xn, xn+1) + sn+1 + d(xn+1, T
n+1xn+1)

+ d(Tn+1xn, Txn)

≤ (1 + kn+1)(αnd(xn, yn) + (1− αn)d(xn, T
nyn)) + sn+1

+ d(xn+1, T
n+1xn+1) + d(Tn+1xn, Txn)

≤ (1 + kn+1)(αnd(xn, yn) + (1− αn)(d(xn, yn) + d(yn, T
nyn)))

+ sn+1 + d(xn+1, T
n+1xn+1) + d(Tn+1xn, Txn)

≤ (1 + kn+1)(d(xn, yn) + (1− αn)d(yn, T
nyn)) + sn+1

+ d(xn+1, T
n+1xn+1) + d(Tn+1xn, Txn)

≤ (1 + kn+1)((1− βn)d(xn, T
nxn) + (1− αn)d(yn, T

nyn))

+ sn+1 + d(xn+1, T
n+1xn+1) + d(Tn+1xn, Txn).

Since limn→∞ kn = 1, limn→∞ sn = 0, by (4.4), (4.5), and (4.6), we conclude that

lim
n→∞

d(xn, Txn) = 0.

Hence, we obtain the desired result. 2

Now, we prove a strong convergence theorem for a generalized asymptotically
nonexpansive semi-compact mapping in p-Hadamard spaces.

Theorem 4.2. Suppose that X, C, T , {xn}, {αn}, {βn} are as in Lemma 4.1. If
Tm is semi-compact for some m ∈ N, then {xn} converges strongly to a fixed point
of T .

Proof. By Lemma 4.1(iii), limn→∞ d(xn, Txn) = 0. Fix m ∈ N, we have

d(xn, T
mxn) ≤ d(xn, Txn) + d(Txn, T

2xn) + · · ·+ d(Tm−1xn, T
mxn).

Since T is uniformly continuous, we have

lim
n→∞

d(xn, T
mxn) = 0.

That is, {xn} is an AFPS for Tm. By the semi-compactness of Tm, there exist a
subsequence {xnk

} of {xn} and z ∈ C such that limk→∞ xnk
= z. Again, by the

uniform continuity of T , we have

d(Tz, z) ≤ d(Tz, Txnk
) + d(Txnk

, xnk
) + d(xnk

, z) → 0 as k → ∞.
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Then z ∈ F (T ). By Lemma 4.1(ii), limn→∞ d(xn, z) exists, thus z is the strong
limit of the sequence {xn} itself. This completes the proof. 2

Finally, we prove a strong convergence theorem for a generalized asymptotically
nonexpansive mapping which satisfies condition (I) in p-Hadamard spaces.

Theorem 4.3. Suppose that X, C, T , {xn}, {αn}, {βn} are as in Lemma 4.1. If
T satisfies condition (I), then {xn} converges strongly to a fixed point of T .

Proof. By condition (I), there exists a nondecreasing function ρ : [0,∞) → [0,∞)
with ρ(0) = 0 and ρ(r) > 0 for all r ∈ (0,∞) such that

d(xn, Txn) = ρ(dist(xn, F (T ))).

It implies by Lemma 4.1(iii) that

lim
n→∞

ρ(dist(xn, F (T ))) = 0.

Then we have
lim
n→∞

dist(xn, F (T )) = 0.

By Lemma 4.1(i), we obtain that the sequence {xn} is of monotone type (I) with
respect to F (T ). This implies by Lemma 2.6 that the sequence {xn} converges
strongly to a point z ∈ F (T ). This completes the proof. 2

Remark 4.4. Any complete CAT(0) space is a 2-Hadamard space, therefore the
results in this paper can be applied to any complete CAT(0) space.
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