Acknowledgement
The author is very grateful to the referee for the useful comments and suggestions given for the paper.
References
- S. Ben Said, A Product formula and convolution structure for a k-Hankel transform on R, J. Math. Anal. Appl., 463(2)(2018), 1132-1146. https://doi.org/10.1016/j.jmaa.2018.03.073
- S. Ben Said and L. Deleaval, Translation operator and maximal function for the (k, 1)-generalized Fourier transform, J. Funct. Anal., 279(8)(2020), 108706.
- S. Ben Said, T. Kobayashi and B. Orsted, Generalized Fourier transforms 𝓕ka, C. R. Math. Acad. Sci. Paris, 347(19-20)(2009), 1119-1124. https://doi.org/10.1016/j.crma.2009.07.015
- S. Ben Said, T. Kobayashi and B. Orsted, Laguerre semigroup and Dunkl operators, Compos. Math., 148(4)(2012), 1265-1336. https://doi.org/10.1112/S0010437X11007445
- M. A. Boubatra, S. Negzaoui and M. Sifi, A new product formula involving Bessel functions, Integral Transforms Spec. Funct., 33(3)(2022), 247-263. https://doi.org/10.1080/10652469.2021.1926454
- F. Chouchene, R. Daher, T. Kawazoe and H. Mejjaoli, Miyachi's theorem for the Dunkl transform, Integral Transforms Spec. Funct., 22(3)(2011), 167-173. https://doi.org/10.1080/10652469.2010.505029
- M. G. Cowling and J. F. Price, Generalizations of Heisenberg inequality in Harmonic analysis, (Cortona, 1982), Lecture Notes in Math., 992(1983), 443-449. https://doi.org/10.1007/BFb0069174
- R. Daher, On the theorems of Hardy and Miyachi for the Jacobi-Dunkl transform, Integral Transforms Spec. Funct., 18(5-6)(2007), 305-311. https://doi.org/10.1080/10652460701318244
- R. Daher, J. Delgado and M. Ruzhansky, Titchmarsh theorems for Fourier transforms of Holder-Lipschitz functions on compact homogeneous manifolds, Monatsh. Math., 189(1)(2019), 23-49. https://doi.org/10.1007/s00605-018-1253-0
- R. Daher, T. Kawazoe and H. Mejjaoli, A generalization of Miyachi's theorem, J. Math. Soc. Japan, 61(2)(2009), 551-558. https://doi.org/10.2969/jmsj/06120551
- C. F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc., 311(1)(1989), 167-183. https://doi.org/10.1090/S0002-9947-1989-0951883-8
- S. El ouadih and R. Daher, Generalization of Titchmarsh's Theorem for the Dunkl Transform in the Space Lp(ℝd, wl(x)dx), Int. J. Math. Model. Comput., 6(4)(2016), 261-267.
- G. H. Hardy, A theorem concerning Fourier transforms, J. London Math. Soc., 8(1933), 227-231. https://doi.org/10.1112/jlms/s1-8.3.227
- R. Howe, The oscillator semigroup, Proc. Sympos. Pure Math., Vol. 48, American Mathematical Society, Providence, RI, (1988), 61-132.
- T. Kobayashi and G. Mano, The inversion formula and holomorphic extension of the minimal representation of the conformal group, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., Vol. 12, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, (2007), 151-208.
- E. M. Loualid, A. Achak and R. Daher, Analogues of Miyachi and Cowling-Price theorems for the generalized Dunkl transform, Int. J. Eng. Appl. Sci., 2(1)(2022), 355-362.
- M. Maslouhi, An analog of Titchmarsh's Theorem for the Dunkl transform, Integral Transforms Spec. Funct., 21(9-10)(2010), 771-778. https://doi.org/10.1080/10652461003675752
- A. Miyachi, A generalization of theorem of Hardy, Harmonic Analysis Seminar held at Izunagaoka, Shizuoka-Ken, Japon, (1997), 44-51.