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ABSTRACT. In this paper, we generalize the notions uniformly S-flat, briefly u-S-flat,
modules and dimensions. We introduce and study the notions of weak u-S-flat modules.
An R-module M is said to be weak u-S-flat if Torf*(R/I, M) is u-S-torsion for any ideal
I of R. This new class of modules will be used to characterize u-S-von Neumann regular
rings. Hence, we introduce the weak u-S-flat dimensions of modules and rings. The rela-
tions between the introduced dimensions and other (classical) homological dimensions are
discussed.

1. Introduction

Throughout this article, all rings considered are commutative with unity, all
modules are unital and S always is a multiplicative subset of R, that is, 1 € §
and s;so € S for any 57 € S, so € S. Let R be a ring and M an R-module.
Recall from Zhang, [3],that an R-module M is said to be uniformly S-torsion if
sT = 0 for some s € S. The abbreviateion u- will always stand for ‘uniformly’.
An R-module M is S-finite if and only if M/F is u-S-torsion for some finitely
generated submodule F of M. In the same way, Zhang defined an R-sequence

0= ML NS L0 tobe u-S-exact (at N) provided that there is an element
s € S such that s Ker(g) C Im(f) and sIm(f) C Ker(g). We say a long R-sequence

oo — AL £> A, f"—+§ Apy1 — ... is u-S-exact, if for any n there is an
element s € S such that sKer(f,+1) C Im(f,) and sIm(f,) C Ker(fn+1). A u-S-
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exact sequence 0 - A — B — C — 0 is called a short u-S-exact sequence. An
R-homomorphism f : M — N is a u-S-monomorphism (resp., u-S-epimorphism,
u-S-isomorphism) provided 0 — M % N (resp., M 5 N 0,0 > M 5 N =0
) is u-S-exact. It is easy to verify an R-homomorphism f : M — N is a u-S-
monomorphism (resp., u-S-epimorphism, u-S-isomorphism) if and only if Ker(f)
(resp., CoKer(f), both Ker(f) and CoKer(f)) is a u-S-torsion module.

In [3], Zhang introduced the class of u-S-flat modules F' for which the functor
F ®pr — preserves u-S-exact sequences. The class of u-S-flat modules can be seen
as a uniform generalization of that of flat modules, since an R-module F' is u-S-flat
if and only if Torf'(F, M) is u-S-torsion for any R-module M. The class of u-S-flat
modules has the following u-S-hereditary property: let 0 > A — B — C — 0 be a
u-S-exact sequence, if B and C' are u-S-flat so is A (see [[3], Proposition 3.4]).

In [5], the author introduced the u-S-flat dimensions of modules and rings. Let R
be a ring, S a multiplicative subset of R and n be a positive integer. We say that
an R-module has a u-S-flat dimension less than or equal to n, u-S-fdg(M) < n, if
TorﬁH(M, N) is u-S-torsion R-module for all R-modules N. Hence, the u-S-weak
global dimension of R is defined to be

u-S-w.gl.dim(R) = sup{u-S-fdg(M) | M is an R-module}.

As in [4], a u-S-exact sequence of R-modules 0 - A — B — C — 0 is
said to be wu-S-pure provided that for any R-module M, the induced sequence
0 >M®RrA—>M®rB— M®®rC — 0 is also u-S-exact, and a submodule A of
B is called a u-S-pure submodule if the exact sequence 0 -+ A — B — B/A — 0 is
u-S-pure exact.

In [3], Zhang defined the u-S-von Neumann regular ring as follows: Let R be a ring
and S a multiplicative subset of R. R is called a u-S-von Neumann regular ring
provided there exists an element s € S such that for any a € R there exists r € R
with sa = ra?. Thus by [[3], Theorem 3.13], R is a u-S-von Neumann regular ring
if and only if every R-module is u-S-flat.

In Section 2, we introduce the concept of w-u-S-flat modules and we study some
characterization of w-u-S-flat modules. Hence, we prove that a ring R is u-S-von
Neumann regular if and only if every R-module is w-u-S-flat. We prove also, if an
R-module F' is w-u-S-flat, then Fjg is flat over Rg. A new local characterization of
flat modules also is given. Section 3 deals with the w-u-S-flat dimension of modules
and rings. After a routine study of these dimensions, we prove that R is a u-S-von
Neumann regular ring if and only if w-u-S-w.gl.dim(R) = 0 if and only if every R/T
is w-u-S-flat for any ideal I of R.

2. Weak u-S-flat Modules

In this section, we introduce a class of modules called weak u-S-flat modules
and we study their properties and give their characterizations. The abbreviation
w- always stands for ‘weak’. We start with the following definition.
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Definition 2.1. An R-module M is said to be w-u-S-flat if Tor['(R/I, M) is u-S-
torsion for any ideal I of R.

Obviously, every u-S-flat module is w-u-S-flat. If S is consist of units, then w-u-S-
flat modules and u-S-flat modules coincide.

Remark 2.2. Let R = Z the ring of integers, p a prime in Z and S = {p™|n > 0}.
Let M = Z /7 be a Z-module where Zy) is the localization of Z at S. By Ezapmle
[[8], Example 3.3], we have M is w-u-S-flat but not u-S-flat.

Recall from [[2], Theorem 2.5.6], that an R-module M is flat if and only if for any
(finitely generated) ideal I of R, 0 - I ®r M — R®g M is exact if and only if for
any (finitely generated) ideal I of R, the natural homomorphism 0 — I M — IM
is an isomorphism. We give a u-S-analogue of this result.

Proposition 2.3. Let R be a ring, S be a multiplicative subset of R, and M be an
R-module. The following are equivalent:
1. M is w-u-S-flat.
2. Torf'(R/I, M) is u-S-torsion for any finitely generated ideal I of R.
8. The natural homomorphism I @ g M — R ®gr M is a u-S-monomorphism,
for any ideal I of R,.
4. The natural homomorphism [ @ g M — R ®@pr M is a u-S-monomorphism,
for any finitely generated ideal I of R.

5. The natural homomorphism uy : I @g M — IM is a u-S-isomorphism, for
any ideal I of R.

6. The natural homomorphism uy : I @g M — IM is a u-S-isomorphism, for
any finitely generated ideal I of R.
Proof. The implications (1) = (2), (3) = (4) and (5) = (6) are obvious.
(1) & (3) and (2) < (4). Let I be a (finitely generated) ideal of R. Then we have
a long exact sequence:

0 — Torf'(R/I,M) - I@r M - ROp M — R/I®@r M — 0

Consequently, Torf(R/I, M) is u-S-torsion if and only if I ® g M — R®p M is a
u-S-monomorphism.

(3) = (5) and (4) = (6). Let I be a (finitely generated) ideal of R. Then we have
the following commutative diagram:

04>I®RM*>R®RM

Iz E

0 IM M
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Then, p; is a u-S-monomorphism. Since the multiplicative map p; is an epimor-
phism, py is a u-S-isomorphism.

(6) = (3). Let I be an ideal of R. We just need to show Ker(ur) is u-S-
torsion. Suppose that pr(X7(a; ® x;)) = a2, =0, a; € I, z; € M. Let
Iy = Ray+-- -+ Ra,. Hence, Iy C I. Consider the following commutative diagram:

Io@pr M —2 5 T@r M

|0 Iz

IoM —" 5 1M

By (6), p1, is u-S-isomorphism. Thus, there exists s € S such that s ja;,®@x; =0
in Iy ®g M. Since h is a monomorphism, g is a u-S-monomorphism. Hence, there
exists s’ € S such that '3 ;a; ® z; =0 in I ® g M, which implies that Ker(uy) is
u-S-torsion. O

Corollary 2.4. Let R be a ring, S be a multiplicative subset of R and M be an
R-module. The class of w-u-S-flat R-modules is closed under u-S-isomorphisms.
Proof. Let f : M — N be a u-S-isomorphisms, and I be an ideal of R. There
exists two exact sequence 0 - Ty - M - L - 0and 0 - L - N —
Ty — 0 with 77 and T, u-S-torsion. Consider the induced two long exact se-
quence, Tor{(R/I,Ty) — Torf(R/I,M) — Torf(R/I,L) — R/I ®p T; and
Torf(R/I,Ty) — Tor®(R/I, L) — Tori(R/I, N) — Torf(R/I,Ty). By [[3], Corol-
lary 2.6], M is w-u-S-flat if and only if N is w-u-S-flat. O

Proposition 2.5. Let R be a ring, S be a multiplicative subset of R. R is u-S-von
Neumann regular ring if and only if every R-module of R is w-u-S-flat.

Proof. =. By [[3], Theorem 3.13].

<. Let I and J be ideals of R. We have Torf(R/I, R/.J) u-S-torsion since R/.J
is w-u-S-flat. Thus, there exsits s € S such that s Tori'(R/I,R/J) = 0. So, R is
u-S-von Neumann regular by [[3], Theorem 3.13]. O

Remark 2.6. Let T = Zy x Zy be a semi-simple ring and s = (1,0) € T. Then
any element a € T satisfies a> = a and 2a = 0. Let R = T[z]/(sz,x?) with z the
indeterminate and S = {1, s} be a multiplicative subset of R. By [[3], Example
3.18], R is u-S-von Neumann regular and not von Neumann regular, so there exsits
an R-module which is w-u-S-flat but not flat (see, Proposition 2.5).

Recall that an R-module M is said to be an S-torsion-free module if sx = 0, for
s € S and x € M, implies = = 0.

Lemma 2.7. Let R be a ring, S be a multiplicative subset of R, and M be an
R-module. If M is a w-u-S-flat, then Homg(M, E) is injective for any injective
S-torsion-free R-module E.
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Proof. Let I be an ideal of R and E be an injective S-torsion-free. By [[2], Theorem
3.4.11] we have the isomorphism

Exth(R/I,Homg (M, E)) = Homg(Tor["(R/I, M), E).

Since, M is w-u-S-flat, we have that Torl(R/I, M) is u-S-torsion and by [[3], Propo-
sition 2.5] we have Hompg(Tory(R/I, M), E) = 0. Thus, Extk(R/I, Homg(M, E)) =
0 which implies that Homp (M, E) is injective. o

Proposition 2.8. Let R be a ring, S be a multiplicative subset of R. Then the
following statements hold.

1. The class of all w-u-S-flat modules is closed under pure submodules and pure
quotients.

2. Any finite direct sum of w-u-S-flat modules is w-u-S-flat.

3. Let 0 > A — B — C — 0 be a u-S-exact sequence. If A is u-S-torsion.
Then B is w-u-S-flat if and only if C' is w-u-S-flat.

4. Let 0 > A — B — C — 0 be a u-S-exact sequence. If C' is w-u-S-flat with
u-S-fdg(C) < 1. Then A is w-u-S-flat if and only if B is w-u-S-flat.

Proof. (1). Let I be an ideal of R. Suppose 0 =+ M — N — L — 0 is a pure exact
sequence. We have the following commutative diagram with rows exact:

0 —— M®grl ——— N®rl —— L®rI —— 0

/] ! g

0 — M®rR—— N®p R — L®r R —— 0

| | |

0 — M®rR/I —— N®rR/I —— L®rR/I —— 0

By the S-analogue of the Five Lemma (see[[5], Theorem 1.3]), the natural homomor-
phism f: M®rl - M®rRand g: L&rI — L®g R are all u-S-monomorphisms.
Consequently, M and L are all w-u-S-flat by Proposition 2.3.

(2). Let Fy,...,F, be a w-u-S-flat modules and I be an ideal of R. Then, there
exists s; € S such that s; Tor{%(R/I, F;)=0. Set s = s1...8,. Thus,

sTor (R/I,@D F;) = @ s Torf(R/I, F;) = 0,
i=1 i=1
which implies that @', F; is w-u-S-flat.
(3). Let 0 > A — B — C — 0 be a u-S-exact sequence and I be an ideal of R.
By [[5], Theorem 1.5], we have the following u-S-exact sequence

Torf(R/I,A) — Tor®(R/I, B) — Tor¥(R/I,C) — R/I @R A.
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Since A is u-S-torsion, we get that Torf'(R/I, A) and R/I @ A are u-S-torsion by
[[3], Corollary 2.6]. Hence, Torf*(R/I, B) u-S-torsion if and only if Torf(R/I,C)
u-S-torsion, which implies that B is w-u-S-flat if and only if C' is w-u-S-flat.

(4). Let 0 > A — B — C — 0 be a u-S-exact sequence and I be an ideal of R. By
[[5], Theorem 1.5], we have the following u-S-exact sequence

Tor¥(R/I,C) — Tor®(R/I,A) — Tor®(R/I, B) — TorX(R/I,C).

The left term is u-S-torsion by [[5], Proposition 2.3] and the right term is u-S-torsion
since C' is w-u-S-flat. Hence, Tor®(R/I, A) u-S-torsion if and only if Tor®(R/I, B)
u-S-torsion, which implies that A is w-u-S-flat if and only if B is w-u-S-flat. O

Lemma 2.9. Let R be a ring and S a multiplicative subset of R. If A is a flat
R-module and B a w-u-S-flat R-module, then, A ®gr B is w-u-S-flat R-module.

Proof. Let I be an ideal of R. By [[2], Theorem 3.4.10] we have the isomorphism
Torf(R/I,A®p B) = A®g Torf(R/I, B).
For any s € S we have
sTorf(R/I,A®g B) = s(A®g Torl(R/I,B)) = A®p s Torf(R/I, B).
Since B is a w-u-S-flat, Tor®(R/I, B) is a u-S-torsion with respect to, say s. So
s Torf(R/I, B) = 0. Thus,
sTorf(R/I,A®Rr B) = A®R 0.
Hence, Tor®®(R/I, A ®g B) is u-S-torsion. Then, A @ B is a w-u-S-flat. O

Proposition 2.10. Let R be a ring, S be a multiplicative subset of R. If M 1is
w-u-S-flat over a ring R, then Mg is flat over Rg. The converse holds if S consists
of finite elements.

Proof. Let Is be an ideal of Rg, where [ is an ideal of R. Then there exists
s € S such that s Torf(R/I, M) = 0. Hence, by [[2], Theorem 3.4.12], we have
0 = Torf(R/I,M)g = Tor;** (Rs/Is, Ms). So Mg is flat over Rg. For the converse,
let I be an ideal of R. By [[2], Theorem 3.4.12] again, we have Torf(R/I, M)s = 0
which implies that Torf'(R/I, M) is S-torsion by [[2], Example 1.6.13]. Hence,
Torf(R/I, M) is u-S-torsion by [[3], Proposition 2.3] and so M is w-u-S-flat. O

By Proposition 2.10 and [[3], Proposition 3.8] we have the following corollary.

Corollary 2.11. Let R be a ring, S be a multiplicative subset of R consisting of
finite elements. Then, every w-u-S-flat R-module is u-S-flat.

Let p be a prime ideal of R. We say an R-module M is w-u-p-flat shortly provided
that M is w-u-(R — p)-flat.

Proposition 2.12. Let R be a ring and M an R-module. Then the following
statements are equivalent:
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1. M is flat.
2. M is w-u-p-flat for any p € Spec(R).
3. M is w-u-m-flat for any m € Max(R).

Proof. (1) = (2) = (3). These are trivial.

(3) = (1). Let I be an ideal of R. Hence, Torf(R/I, M) is u-(R — m)-torsion.
Then, for any m € Max(R), there exists s, € S such that s, Tori'(R/I, M) = 0.
Since the ideal generated by all sy, is R, Torf(R/I, M) = 0. So M is flat. O

Let R be a ring and M an R-module. R[z] denotes the polynomial ring with one
indeterminate, where all coefficients are in R. Set M[z] = M ®p R[z], then M|z]
can be seen as an R[z]-module naturally.

Proposition 2.13. Let R be a ring, S be a multiplicative subset of R and M is an
R[z]-module. If M is w-u-S-flat over R[z], then M is w-u-S-flat over R.

Proof. Suppose that M is a w-u-S-flat R[x]-module. Then it is easy to verify that
Mz] is also a w-u-S-flat R[z]-module. By [[1], Theorem 1.3.11], Tor?(R/I, M)[x] =
Tor?[w]((R/I)[x], Mlz)) = Tor?[m](R[m]/I[m], M]z]) is u-S-torsion. Hence, there
exists an element s € S such that s Torf'(R/I, M)[x] = 0. Thus, s Tor;'(R/I, M) =
0. It follows that M is a w-u-S-flat R-module. a

3. The Weak u-S-flat Dimension of Modules and Rings

Let R be a ring. The flat dimension of an R-module M is defined as the shortest
flat resolution of M. In this section, we introduce and investigate the notion of
weak u-S-flat dimension of modules and rings as follows.

Defenition 3.1. If M is an R-module, then w-u-S-fdg (M) (w-u-S-fd abbreviates
weak u-S-flat dimension) if there is a u-S-exact sequence of R-modules

0—-F,— - —F —>F—>M-=0 (%)

where each F; is a u-S-flat (i =0,--- ,n — 1) and F,, is w-u-S-flat. The u-S-exact
sequence (x) is called a w-u-S-flat u-S-resolution of length n of M. If no such finite
w-u-S-flat u-S-resolution exists, then w-u-S-fdr(M) = oo; otherwise, define w-u-
S-fdr(M) = n if n is the length of a shortest w-u-S-flat u-S-resolution of M.

The weak u-S-flat dimension of R is defined by:

w-u-S-w.gl.dim(R) = sup{w-u-S-fdg (M) : M is an R-module}.

Obviously, w-u-S-fdr(M) < u-S-fdr(M) < fdr(M), with equality when S is com-
posed of units. However, this inequality may be strict (see, Remarks 2.2 and 2.6). It
is also obvious that an R-module M is w-u-S-flat if and only if w-u-S-fdg(M) = 0.
Also, w-u-S-w.gl.dim(R) < u-S-w.gl.dim(R) < w.gl.dim(R), with equality when S
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is composed of units, and this inequality may be strict (see, Proposition 2.5 and
[[3], Example 3.18]).
By Corollary 2.4, we have the following Lemma.

Lemma 3.2. Let R be a ring, S a multiplicative subset of R. If A is u-S-isomorphic
to B, then w-u-S-fdg(A) = w-u-S-fdr(B).

In the next result, we give a description of the w-u-S-flat dimension of modules.

Proposition 3.3. Let R be a ring and S be a multiplicative subset of R. The
following statements are equivalent for an R-module M.

. wu-S-fdr(M) < n.
) T0r§+1(R/I,M) is u-S-torsion for any ideal I of R.

~

2
3. Toer(R/I,M) 18 u-S-torsion for any finitely genrated ideal I of R.
4

. If the sequence 0 — F,, — F,_1 — --- — Fy =& M — 0 is an exact with
Ey, -+, F,_1 are flat R-modules, then F,, is w-u-S-flat.

5. If the sequence 0 — F,, —» F,_1 — -+ = Fy — M — 0 is a u-S-exact with
Fo, -, F_1 are u-S-flat R-modules, then F,, is w-u-S-flat.

6. If the sequence 0 — F, — F,_1 — - — Fy =& M — 0 is an exact with
Fo, -+, Fh—1 are u-S-flat R-modules, then F), is w-u-S-flat.

7. If the sequence 0 — F,, — F,,_1 — --+ = Fy =& M — 0 is a u-S-exact with
Fo, -+, F,—1 are flat R-modules, then F,, is w-u-S-flat.

8. There exists a u-S-exact sequence 0 — F,, - F,,_1 — -+ — Fyg > M — 0,
where Fy, -+, F,_1 are flat R-modules and F,, is w-u-S-flat.

9. There exists an exact sequence 0 — F,, — F,, 1 — -+ = Fy — M — 0,
where Fy, -+, F,_1 are flat R-modules and F,, is w-u-S-flat.

10. There exists an exact sequence 0 — F,, — F,,_1 — -+ — Fy - M — 0,
where Fy, -+, F, are w-u-S-flat.

Proof. (1) = (2). We prove (2) by induction on n. For the case n = 0, (2) holds
by Proposition 2.3 as M is a w-u-S-flat module. If n > 0, then there is a u-S-
exact sequence 0 = F,, — F,_1 — -+ = Fy — M — 0 with all F; u-S-flat (i =
0,--+-,n—1) and F, is w-u-S-flat. Let Ky = ker(Fy — M). We have two u-S-exact
sequences 0 - Ko > Fp > M - 0and 0 - F, > F,,_ 1 — ... > F; — Ky — 0.
We note that w-u-S-fdg(Ky) < n— 1. Hence, by induction we have, Tor’(R/I, K;)
is u-S-torsion for any ideal I of R. Thus, it follows from [[5], Corollary 1.6], that
Tor?(R/I, M)) is u-S-torsion.

(2) = (3). This is obvious.

(3) = (4). Let 0 » F, - F,_1 — -+~ —» Fy — M — 0 be an exact sequence.
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Set K¢ = ker(Fy — M) and K; = ker(F; — F;_1), where (i =1,...,n —1). Since
all Fy, Fy, ..., Fi_y are flat, Torj'(R/I, F,,) = Tor,}, ,(R/I, M) is u-S-torsion for all
finitely generated ideal I of R. Thus, F), is a w-u-S-flat module by Proposition 2.3.
(4) = (1). Trivial.

3)=(5). Let 0 > F,, » F,_1 — -+ — Fy = M — 0 be a u-S-exact sequence.
Set L, = F, and L, = Im(F; — F;_1), where (¢ = 1,...,n — 1). Then both
00— Liy1 > F,—L;—0and 0 —» L; — Fy - M — 0 are u-S-exact sequences.
By using [[5], Corollary 1.6] repeatedly, we can obtain that TorX(F,, R/I) is u-S-
torsion for all finitely generated ideal I of R, which implies that F;, is w-u-S-flat by
Proposition 2.3.

(5) = (6) = (4) and (5) = (7) = (4). These implications are trivial.

(4) = (9). Let ... » P, = P, N P, 5... > Py = M — 0 be a projective
resolution of M. Set F,, = Ker(f). Then we have an exact sequence 0 — F,, —

Py -1 Pys...— Py— M — 0. By (4), F, is w-u-S-flat. So (9) holds.
(9) = (10) = (1) and (9) = (8) = (1). These are obvious. O

Corollary 3.4. Let R be a ring and S’ C S multiplicative subsets of R. Suppose
M is an R-module, then w-u-S-fdg(M) < w-u-S’-fdg(M).

Proof. Suppose S’ C S are multiplicative subsets of R. Let M be an R-modules
and I be an ideal of R. If Tor, | (R/I, M) is u-S'-torsion, then Tor,  (R/I, M) is
u-S-torsion. Hence, by Proposition 3.3., we have the result. O

Corollary 3.5. Let R be a ring, S a multiplicative subset of R and M an R-module.
Then, fdrs(Ms) < w-u-S-fdr(M). Moreover, if S is composed of finite elements,
then w-u-S-fdr(M) = fdg,(Ms).

Proof. Let 0 - F, —» F,,_1 — ... = F1 = Fy =& M — 0 be an exact sequence,
where Fy, Fy,...,F,_1 are flat R-modules. By localizing at S, we get an exact
sequence of Rg-modules, 0 — (F,)s — (Fn-1)s — ... = (F1)s — (Fo)s —
(M)s — 0. By Proposition 2.10, if F,, is w-u-S-flat, so (F,)g is flat over Rg, and
the converse if S composed of finite elements. Hence, the desired result follows.

The proof of the next proposition is standard homological algebra. Thus we
omit its proof.
Proposition 3.6. Let R be a ring, S be a multiplicative subset of R, and 0 —
M" — M' — M — 0 be an ezact sequence of R-modules. If two of w-u-S-fdg(M"),
w-u-S-Hdr(M') and w-u-S-fdr(M) are finite, so is the third. Moreover

1. w-u-S-fdr(M") < max {w-u-S-fdg(M"), w-u-S-fdr(M) — 1}.
2. w-u-S-Hdr(M’) < max{w-u-S-fdr(M"), w-u-S-fdr(M)}.
3. w-u-SHdr(M) < max{w-u-SHtdgr(M'), w-u-S-fdr(M") + 1}.

Corollary 3.7. Let R be a ring, S be a multiplicative subset of R, and 0 —
M" — M’ — M — 0 be an exact sequence of R-modules. If M’ is w-u-S-flat and
w-u-S-Hdr(M) > 0, then w-u-S-fdg(M) = w-u-S-fdg(M") + 1.
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Proposition 3.8. Let R be a ring, S be a multiplicative subset of R, and {M;} be
a finite family of R-modules. Then w-u-S-fdg(®;M;) = sup,{w-u-S-fdr(M;)}.

Proof. The proof is straightforward. O

Proposition 3.9. Let R be a ring, S be a multiplicative subset of R, and n > 0 be
a an integer. Then the following statements are equivalent:

1. w-u-S-w.gl.dim(R) < n.

2. w-u-S-fdg(M) < n for all R-modules M.

3. w-u-S-Hdr(R/J) < n for all ideals J of R.

4. Tor§+1(R/I,M) is u-S-torsion for any R-module M and any ideal I of R.
5

. Tor,}fﬂ(l’%/f7 M) is u-S-torsion for any R-module M and any finitely gener-
ated ideal I of R.

Consequently, we have

w-u-S-w.gl.dim(R) = sup{w-u-S-fdr(R/J) | J is an ideal of R}

Proof. (1) < (2) = (3) and (4) = (5). The are obvious.

(2) = (4) and (5) = (2). These are immediate from Proposition 3.3.

(3) = (1). Let J be an ideal of R, so w-u-S-fdr(R/J) < n by (3). By Proposition
3.3, Torl, |(R/I,R/J) is u-S-torsion for any ideal I of R. Thus, there exists s €
S such that sTorf‘H(R/I,R/J) = 0 and so by [[5], Proposition 3.2], we have
u-S-w.gl.dim(R) < n for any R-module M. Thus, w-u-S-w.gl.dim(R) < n. O

Next, we show that rings R with w-u-S-w.gl.dim(R) = 0 are exactly u-S-von
Neumann regular rings.
Proposition 3.10. Let R be a ring, S be a multiplicative subset of R. The following
are equivalent:

1. w-u-S-w.gl.dim(R) = 0.

2. Bvery R-module is w-u-S-flat.

3. R/I is w-u-S-flat for any ideal I of R.
4. R is a u-S-von Neumann regular ring.

Proof. The equivalence of (1), (2), and (3), follows from Proposition 3.9.
(2) & (4). Follows from Proposition 2.5. a

The proof of the follwing Proposition fllows from Proposition 3.9. Thus, we
omit its proof.
Proposition 3.11. Let R be a ring, S be a multiplicative subset of R. Then the
following are equivalent:
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1. w-u-S-w.gl.dim(R) < 1.

2. FEvery submodule of w-u-S-flat R-module is w-u-S-flat.
8. Fvery submodule of flat R-module is w-u-S-flat.

4. FEvery ideal of R is w-u-S-flat.

Let 8 : R — T be a ring homomorphism. Suppose S is a multiplicative subset
of R, then 6(S) = {0(s)|s € S} is a multiplicative subset of T'.
Lemma 3.12. Let 0 : R — T be a ring homomorphism, S a multiplicative subset
of R. Suppose L is a w-u-0(S)-flat T-module. Then for any ideal I of R and
any n > 0, Tor®(R/I, L) is u-S-isomorphic to Tor®(R/I,T) @7 L. Consequently,
w-u-S-fdr(L) < w-u-S-fdr(T).
Proof. Similar to proof [[5], Lemma 4.1]. |

Proposition 3.13. Let 0 : R — T be a ring homomorphism, S a multiplicative
subset of R. Suppose M is an T-module. Then

w-u-S-Hdr(M) < w-u-0(S)-fdr (M) + w-u-S-Hdr(T).

Proof. Suppose that w-u-6(S)-fdr(M) =n < co. If n =0, then M is w-u-6(S)-flat
over T. By Lemma 3.12, w-u-S-fdg(M) < n + w-u-S-tdg(T).

Now we assume n > 0. Let 0 - A — F — M — 0 be an exact sequence
of T-modules, where F' is a free T-module. Then w-u-0(S)-fdp(A) = n — 1 by
Corollary 3.7. By induction, w-u-S-fdr(A) < n — 1 + w-u-S-fdr(T"). Note that
w-u-S-fdg(T) = w-u-S-fdg(F'). By Proposition 3.6, we have

w-u-S-fdg (M)

N

max{w-u-S-fdr(F), w-u-S-fdg(A) + 1}
n + w-u-S-fdg(T)
= w-u-0(S)-fdr (M) + w-u-S-fdr(T")

N

O

Proposition 3.14. Let R be a ring, S a multiplicative subset of R and M an
R-module. Then, w-u-S-fd g, (M|x]) = w-u-S-fdr(M).

Proof. Suppose that w-u-S-fdr(M) < n. Then Tor? ,(R/I, M) is u-S-torsion
for any ideal I of R. Let I[z] be an ideal of R[z]. By [[1], Theorem 1.3.11],
we have Tori " ((R/I)[x], M[x]) = Tor®, | (R/I, M) ®g R[z]. And by [[3], Corol-
lary 2.6], we have Tor, ,(R/I, M) ®p R[z] is u-S-torsion since Tor[,,(R/I, M)
is u-S-torsion. Thus, Torﬂﬁ]((R/ J)[x], M[x]) is u-S-torsion, which implies that,
w-u-S-fd g, (M[x]) < n by Proposition 3.3.

Conversely, Let 0 — F,, — ... = F1 — Fy — MJz] — 0 be an exact sequence
with each F; u-S-flat over R[z] (1 <4 < n—1) and F,, w-u-S-flat over R[z]. Hence, it
is also a w-u-S-flat resolution of M|x] over R by Proposition 2.13. Then, by Propo-
sition 3.3, we have Tor’, | (R/I, M|[z]) is u-S-torsion for any ideal I of R. It follows
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that sTorf_H(R/I, Mlz]) = s@>2, Tork, | (R/I,M) = 0. Hence, Tor, (R/I, M)
is u-S-torsion. Consequently, w-u-S-fdr(M) < w-u-S-fdg,)(M|x]) by Proposition
3.3 again. O
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