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Abstract. In this paper, we generalize the notions uniformly S-flat, briefly u-S-flat,

modules and dimensions. We introduce and study the notions of weak u-S-flat modules.

An R-module M is said to be weak u-S-flat if TorR1 (R/I,M) is u-S-torsion for any ideal

I of R. This new class of modules will be used to characterize u-S-von Neumann regular

rings. Hence, we introduce the weak u-S-flat dimensions of modules and rings. The rela-

tions between the introduced dimensions and other (classical) homological dimensions are

discussed.

1. Introduction

Throughout this article, all rings considered are commutative with unity, all
modules are unital and S always is a multiplicative subset of R, that is, 1 ∈ S
and s1s2 ∈ S for any s1 ∈ S, s2 ∈ S. Let R be a ring and M an R-module.
Recall from Zhang, [3],that an R-module M is said to be uniformly S-torsion if
sT = 0 for some s ∈ S. The abbreviateion u- will always stand for ‘uniformly’.
An R-module M is S-finite if and only if M/F is u-S-torsion for some finitely
generated submodule F of M . In the same way, Zhang defined an R-sequence

0 → M
f→ N

g→ L → 0 to be u-S-exact (at N) provided that there is an element
s ∈ S such that sKer(g) ⊆ Im(f) and s Im(f) ⊆ Ker(g). We say a long R-sequence

. . . −→ An−1
fn−→ An

fn+1−→ An+1 −→ . . . is u-S-exact, if for any n there is an
element s ∈ S such that sKer(fn+1) ⊆ Im(fn) and s Im(fn) ⊆ Ker(fn+1). A u-S-
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exact sequence 0 → A → B → C → 0 is called a short u-S-exact sequence. An
R-homomorphism f : M → N is a u-S-monomorphism (resp., u-S-epimorphism,

u-S-isomorphism) provided 0 → M
f→ N (resp., M

f→ N → 0, 0 → M
f→ N → 0

) is u-S-exact. It is easy to verify an R-homomorphism f : M → N is a u-S-
monomorphism (resp., u-S-epimorphism, u-S-isomorphism) if and only if Ker(f)
(resp., CoKer(f), both Ker(f) and CoKer(f)) is a u-S-torsion module.
In [3], Zhang introduced the class of u-S-flat modules F for which the functor
F ⊗R − preserves u-S-exact sequences. The class of u-S-flat modules can be seen
as a uniform generalization of that of flat modules, since an R-module F is u-S-flat
if and only if TorR1 (F,M) is u-S-torsion for any R-module M . The class of u-S-flat
modules has the following u-S-hereditary property: let 0→ A→ B → C → 0 be a
u-S-exact sequence, if B and C are u-S-flat so is A (see [[3], Proposition 3.4]).
In [5], the author introduced the u-S-flat dimensions of modules and rings. Let R
be a ring, S a multiplicative subset of R and n be a positive integer. We say that
an R-module has a u-S-flat dimension less than or equal to n, u-S-fdR(M) ≤ n, if
TorRn+1(M,N) is u-S-torsion R-module for all R-modules N . Hence, the u-S-weak
global dimension of R is defined to be

u-S-w.gl.dim(R) = sup{u-S-fdR(M) | M is an R-module}.

As in [4], a u-S-exact sequence of R-modules 0 → A → B → C → 0 is
said to be u-S-pure provided that for any R-module M , the induced sequence
0→M ⊗R A→M ⊗R B →M ⊗R C → 0 is also u-S-exact, and a submodule A of
B is called a u-S-pure submodule if the exact sequence 0→ A→ B → B/A→ 0 is
u-S-pure exact.
In [3], Zhang defined the u-S-von Neumann regular ring as follows: Let R be a ring
and S a multiplicative subset of R. R is called a u-S-von Neumann regular ring
provided there exists an element s ∈ S such that for any a ∈ R there exists r ∈ R
with sa = ra2. Thus by [[3], Theorem 3.13], R is a u-S-von Neumann regular ring
if and only if every R-module is u-S-flat.

In Section 2, we introduce the concept of w-u-S-flat modules and we study some
characterization of w-u-S-flat modules. Hence, we prove that a ring R is u-S-von
Neumann regular if and only if every R-module is w-u-S-flat. We prove also, if an
R-module F is w-u-S-flat, then FS is flat over RS . A new local characterization of
flat modules also is given. Section 3 deals with the w-u-S-flat dimension of modules
and rings. After a routine study of these dimensions, we prove that R is a u-S-von
Neumann regular ring if and only if w-u-S-w.gl.dim(R) = 0 if and only if every R/I
is w-u-S-flat for any ideal I of R.

2. Weak u-S-flat Modules

In this section, we introduce a class of modules called weak u-S-flat modules
and we study their properties and give their characterizations. The abbreviation
w- always stands for ‘weak’. We start with the following definition.
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Definition 2.1. An R-module M is said to be w-u-S-flat if TorR1 (R/I,M) is u-S-
torsion for any ideal I of R.

Obviously, every u-S-flat module is w-u-S-flat. If S is consist of units, then w-u-S-
flat modules and u-S-flat modules coincide.

Remark 2.2. Let R = Z the ring of integers, p a prime in Z and S = {pn|n ≥ 0}.
Let M = Z(p)/Z be a Z-module where Z(p) is the localization of Z at S. By Exapmle
[[3], Example 3.3], we have M is w-u-S-flat but not u-S-flat.

Recall from [[2], Theorem 2.5.6], that an R-module M is flat if and only if for any
(finitely generated) ideal I of R, 0→ I ⊗RM → R⊗RM is exact if and only if for
any (finitely generated) ideal I of R, the natural homomorphism 0→ I⊗RM → IM
is an isomorphism. We give a u-S-analogue of this result.

Proposition 2.3. Let R be a ring, S be a multiplicative subset of R, and M be an
R-module. The following are equivalent:

1. M is w-u-S-flat.

2. TorR1 (R/I,M) is u-S-torsion for any finitely generated ideal I of R.

3. The natural homomorphism I ⊗R M → R ⊗R M is a u-S-monomorphism,
for any ideal I of R,.

4. The natural homomorphism I ⊗R M → R ⊗R M is a u-S-monomorphism,
for any finitely generated ideal I of R.

5. The natural homomorphism µI : I ⊗R M → IM is a u-S-isomorphism, for
any ideal I of R.

6. The natural homomorphism µI : I ⊗R M → IM is a u-S-isomorphism, for
any finitely generated ideal I of R.

Proof. The implications (1)⇒ (2), (3)⇒ (4) and (5)⇒ (6) are obvious.
(1)⇔ (3) and (2)⇔ (4). Let I be a (finitely generated) ideal of R. Then we have
a long exact sequence:

0→ TorR1 (R/I,M)→ I ⊗RM → R⊗RM → R/I ⊗RM → 0

Consequently, TorR1 (R/I,M) is u-S-torsion if and only if I ⊗RM → R ⊗RM is a
u-S-monomorphism.
(3)⇒ (5) and (4)⇒ (6). Let I be a (finitely generated) ideal of R. Then we have
the following commutative diagram:

0 I ⊗RM R⊗RM

0 IM M

µI ∼=
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Then, µI is a u-S-monomorphism. Since the multiplicative map µI is an epimor-
phism, µI is a u-S-isomorphism.
(6) ⇒ (3). Let I be an ideal of R. We just need to show Ker(µI) is u-S-
torsion. Suppose that µI(Σ

n
i=1(ai ⊗ xi)) = Σni=1aixi = 0, ai ∈ I, xi ∈ M . Let

I0 = Ra1 + · · ·+Ran. Hence, I0 ⊆ I. Consider the following commutative diagram:

I0 ⊗RM I ⊗RM

I0M IM

g

µI0 µI

h

By (6), µI0 is u-S-isomorphism. Thus, there exists s ∈ S such that sΣni=1ai⊗xi = 0
in I0 ⊗RM . Since h is a monomorphism, g is a u-S-monomorphism. Hence, there
exists s′ ∈ S such that s′Σni=1ai ⊗ xi = 0 in I ⊗RM , which implies that Ker(µI) is
u-S-torsion. 2

Corollary 2.4. Let R be a ring, S be a multiplicative subset of R and M be an
R-module. The class of w-u-S-flat R-modules is closed under u-S-isomorphisms.
Proof. Let f : M → N be a u-S-isomorphisms, and I be an ideal of R. There
exists two exact sequence 0 → T1 → M → L → 0 and 0 → L → N →
T2 → 0 with T1 and T2 u-S-torsion. Consider the induced two long exact se-
quence, TorR1 (R/I, T1) → TorR1 (R/I,M) → TorR1 (R/I, L) → R/I ⊗R T1 and
TorR2 (R/I, T2)→ TorR1 (R/I, L)→ TorR1 (R/I,N)→ TorR1 (R/I, T2). By [[3], Corol-
lary 2.6], M is w-u-S-flat if and only if N is w-u-S-flat. 2

Proposition 2.5. Let R be a ring, S be a multiplicative subset of R. R is u-S-von
Neumann regular ring if and only if every R-module of R is w-u-S-flat.

Proof. ⇒. By [[3], Theorem 3.13].
⇐. Let I and J be ideals of R. We have TorR1 (R/I,R/J) u-S-torsion since R/J
is w-u-S-flat. Thus, there exsits s ∈ S such that sTorR1 (R/I,R/J) = 0. So, R is
u-S-von Neumann regular by [[3], Theorem 3.13]. 2

Remark 2.6. Let T = Z2 × Z2 be a semi-simple ring and s = (1, 0) ∈ T . Then
any element a ∈ T satisfies a2 = a and 2a = 0. Let R = T [x]/〈sx, x2〉 with x the
indeterminate and S = {1, s} be a multiplicative subset of R. By [[3], Example
3.18], R is u-S-von Neumann regular and not von Neumann regular, so there exsits
an R-module which is w-u-S-flat but not flat (see, Proposition 2.5).

Recall that an R-module M is said to be an S-torsion-free module if sx = 0, for
s ∈ S and x ∈M , implies x = 0.

Lemma 2.7. Let R be a ring, S be a multiplicative subset of R, and M be an
R-module. If M is a w-u-S-flat, then HomR(M,E) is injective for any injective
S-torsion-free R-module E.
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Proof. Let I be an ideal of R and E be an injective S-torsion-free. By [[2], Theorem
3.4.11] we have the isomorphism

Ext1R(R/I,HomR(M,E)) ∼= HomR(TorR1 (R/I,M), E).

Since, M is w-u-S-flat, we have that TorR1 (R/I,M) is u-S-torsion and by [[3], Propo-
sition 2.5] we have HomR(TorR1 (R/I,M), E) = 0. Thus, Ext1R(R/I,HomR(M,E)) =
0 which implies that HomR(M,E) is injective. 2

Proposition 2.8. Let R be a ring, S be a multiplicative subset of R. Then the
following statements hold.

1. The class of all w-u-S-flat modules is closed under pure submodules and pure
quotients.

2. Any finite direct sum of w-u-S-flat modules is w-u-S-flat.

3. Let 0 → A → B → C → 0 be a u-S-exact sequence. If A is u-S-torsion.
Then B is w-u-S-flat if and only if C is w-u-S-flat.

4. Let 0 → A → B → C → 0 be a u-S-exact sequence. If C is w-u-S-flat with
u-S-fdR(C) ≤ 1. Then A is w-u-S-flat if and only if B is w-u-S-flat.

Proof. (1). Let I be an ideal of R. Suppose 0→M → N → L→ 0 is a pure exact
sequence. We have the following commutative diagram with rows exact:

0 M ⊗R I N ⊗R I L⊗R I 0

0 M ⊗R R N ⊗R R L⊗R R 0

0 M ⊗R R/I N ⊗R R/I L⊗R R/I 0

f g

By the S-analogue of the Five Lemma (see[[5], Theorem 1.3]), the natural homomor-
phism f : M⊗R I →M⊗RR and g : L⊗R I → L⊗RR are all u-S-monomorphisms.
Consequently, M and L are all w-u-S-flat by Proposition 2.3.
(2). Let F1, . . . , Fn be a w-u-S-flat modules and I be an ideal of R. Then, there
exists si ∈ S such that si TorR1 (R/I, Fi) = 0. Set s = s1 . . . sn. Thus,

sTorR1 (R/I,

n⊕
i=1

Fi) =

n⊕
i=1

sTorR1 (R/I, Fi) = 0,

which implies that
⊕n

i=1 Fi is w-u-S-flat.

(3). Let 0→ A→ B → C → 0 be a u-S-exact sequence and I be an ideal of R.
By [[5], Theorem 1.5], we have the following u-S-exact sequence

TorR1 (R/I,A)→ TorR1 (R/I,B)→ TorR1 (R/I,C)→ R/I ⊗R A.
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Since A is u-S-torsion, we get that TorR1 (R/I,A) and R/I ⊗R A are u-S-torsion by
[[3], Corollary 2.6]. Hence, TorR1 (R/I,B) u-S-torsion if and only if TorR1 (R/I,C)
u-S-torsion, which implies that B is w-u-S-flat if and only if C is w-u-S-flat.
(4). Let 0→ A→ B → C → 0 be a u-S-exact sequence and I be an ideal of R. By
[[5], Theorem 1.5], we have the following u-S-exact sequence

TorR2 (R/I,C)→ TorR1 (R/I,A)→ TorR1 (R/I,B)→ TorR1 (R/I,C).

The left term is u-S-torsion by [[5], Proposition 2.3] and the right term is u-S-torsion
since C is w-u-S-flat. Hence, TorR1 (R/I,A) u-S-torsion if and only if TorR1 (R/I,B)
u-S-torsion, which implies that A is w-u-S-flat if and only if B is w-u-S-flat. 2

Lemma 2.9. Let R be a ring and S a multiplicative subset of R. If A is a flat
R-module and B a w-u-S-flat R-module, then, A⊗R B is w-u-S-flat R-module.

Proof. Let I be an ideal of R. By [[2], Theorem 3.4.10] we have the isomorphism

TorR1 (R/I,A⊗R B) ∼= A⊗R TorR1 (R/I,B).

For any s ∈ S we have

sTorR1 (R/I,A⊗R B) ∼= s(A⊗R TorR1 (R/I,B)) = A⊗R sTorR1 (R/I,B).

Since B is a w-u-S-flat, TorR1 (R/I,B) is a u-S-torsion with respect to, say s. So
sTorR1 (R/I,B) = 0. Thus,

sTorR1 (R/I,A⊗R B) ∼= A⊗R 0.

Hence, TorR1 (R/I,A⊗R B) is u-S-torsion. Then, A⊗R B is a w-u-S-flat. 2

Proposition 2.10. Let R be a ring, S be a multiplicative subset of R. If M is
w-u-S-flat over a ring R, then MS is flat over RS. The converse holds if S consists
of finite elements.

Proof. Let IS be an ideal of RS , where I is an ideal of R. Then there exists
s ∈ S such that sTorR1 (R/I,M) = 0. Hence, by [[2], Theorem 3.4.12], we have
0 = TorR1 (R/I,M)S ∼= TorRS

1 (RS/IS ,MS). So MS is flat over RS . For the converse,
let I be an ideal of R. By [[2], Theorem 3.4.12] again, we have TorR1 (R/I,M)S = 0
which implies that TorR1 (R/I,M) is S-torsion by [[2], Example 1.6.13]. Hence,
TorR1 (R/I,M) is u-S-torsion by [[3], Proposition 2.3] and so M is w-u-S-flat. 2

By Proposition 2.10 and [[3], Proposition 3.8] we have the following corollary.

Corollary 2.11. Let R be a ring, S be a multiplicative subset of R consisting of
finite elements. Then, every w-u-S-flat R-module is u-S-flat.

Let p be a prime ideal of R. We say an R-module M is w-u-p-flat shortly provided
that M is w-u-(R− p)-flat.

Proposition 2.12. Let R be a ring and M an R-module. Then the following
statements are equivalent:
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1. M is flat.

2. M is w-u-p-flat for any p ∈ Spec(R).

3. M is w-u-m-flat for any m ∈ Max(R).

Proof. (1)⇒ (2)⇒ (3). These are trivial.
(3) ⇒ (1). Let I be an ideal of R. Hence, TorR1 (R/I,M) is u-(R − m)-torsion.
Then, for any m ∈ Max(R), there exists sm ∈ S such that sm TorR1 (R/I,M) = 0.
Since the ideal generated by all sm is R, TorR1 (R/I,M) = 0. So M is flat. 2

Let R be a ring and M an R-module. R[x] denotes the polynomial ring with one
indeterminate, where all coefficients are in R. Set M [x] = M ⊗R R[x], then M [x]
can be seen as an R[x]-module naturally.

Proposition 2.13. Let R be a ring, S be a multiplicative subset of R and M is an
R[x]-module. If M is w-u-S-flat over R[x], then M is w-u-S-flat over R.

Proof. Suppose that M is a w-u-S-flat R[x]-module. Then it is easy to verify that
M [x] is also a w-u-S-flat R[x]-module. By [[1], Theorem 1.3.11], TorR1 (R/I,M)[x] ∼=
Tor

R[x]
1 ((R/I)[x],M [x]) = Tor

R[x]
1 (R[x]/I[x],M [x]) is u-S-torsion. Hence, there

exists an element s ∈ S such that sTorR1 (R/I,M)[x] = 0. Thus, sTorR1 (R/I,M) =
0. It follows that M is a w-u-S-flat R-module. 2

3. The Weak u-S-flat Dimension of Modules and Rings

Let R be a ring. The flat dimension of an R-module M is defined as the shortest
flat resolution of M . In this section, we introduce and investigate the notion of
weak u-S-flat dimension of modules and rings as follows.

Defenition 3.1. If M is an R-module, then w-u-S-fdR(M) (w-u-S-fd abbreviates
weak u-S-flat dimension) if there is a u-S-exact sequence of R-modules

0→ Fn → · · · → F1 → F0 →M → 0 (∗)

where each Fi is a u-S-flat (i = 0, · · · , n− 1) and Fn is w-u-S-flat. The u-S-exact
sequence (∗) is called a w-u-S-flat u-S-resolution of length n of M . If no such finite
w-u-S-flat u-S-resolution exists, then w-u-S-fdR(M) = ∞; otherwise, define w-u-
S-fdR(M) = n if n is the length of a shortest w-u-S-flat u-S-resolution of M .
The weak u-S-flat dimension of R is defined by:

w-u-S-w.gl.dim(R) = sup{w-u-S-fdR(M) : M is an R-module}.

Obviously, w-u-S-fdR(M) ≤ u-S-fdR(M) ≤ fdR(M), with equality when S is com-
posed of units. However, this inequality may be strict (see, Remarks 2.2 and 2.6). It
is also obvious that an R-module M is w-u-S-flat if and only if w-u-S-fdR(M) = 0.
Also, w-u-S-w.gl.dim(R) ≤ u-S-w.gl.dim(R) ≤ w.gl.dim(R), with equality when S
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is composed of units, and this inequality may be strict (see, Proposition 2.5 and
[[3], Example 3.18]).

By Corollary 2.4, we have the following Lemma.

Lemma 3.2. Let R be a ring, S a multiplicative subset of R. If A is u-S-isomorphic
to B, then w-u-S-fdR(A) = w-u-S-fdR(B).

In the next result, we give a description of the w-u-S-flat dimension of modules.

Proposition 3.3. Let R be a ring and S be a multiplicative subset of R. The
following statements are equivalent for an R-module M .

1. w-u-S-fdR(M) 6 n.

2. TorRn+1(R/I,M) is u-S-torsion for any ideal I of R.

3. TorRn+1(R/I,M) is u-S-torsion for any finitely genrated ideal I of R.

4. If the sequence 0 → Fn → Fn−1 → · · · → F0 → M → 0 is an exact with
F0, · · · , Fn−1 are flat R-modules, then Fn is w-u-S-flat.

5. If the sequence 0 → Fn → Fn−1 → · · · → F0 → M → 0 is a u-S-exact with
F0, · · · , Fn−1 are u-S-flat R-modules, then Fn is w-u-S-flat.

6. If the sequence 0 → Fn → Fn−1 → · · · → F0 → M → 0 is an exact with
F0, · · · , Fn−1 are u-S-flat R-modules, then Fn is w-u-S-flat.

7. If the sequence 0 → Fn → Fn−1 → · · · → F0 → M → 0 is a u-S-exact with
F0, · · · , Fn−1 are flat R-modules, then Fn is w-u-S-flat.

8. There exists a u-S-exact sequence 0 → Fn → Fn−1 → · · · → F0 → M → 0,
where F0, · · · , Fn−1 are flat R-modules and Fn is w-u-S-flat.

9. There exists an exact sequence 0 → Fn → Fn−1 → · · · → F0 → M → 0,
where F0, · · · , Fn−1 are flat R-modules and Fn is w-u-S-flat.

10. There exists an exact sequence 0 → Fn → Fn−1 → · · · → F0 → M → 0,
where F0, · · · , Fn are w-u-S-flat.

Proof. (1) ⇒ (2). We prove (2) by induction on n. For the case n = 0, (2) holds
by Proposition 2.3 as M is a w-u-S-flat module. If n > 0, then there is a u-S-
exact sequence 0 → Fn → Fn−1 → · · · → F0 → M → 0 with all Fi u-S-flat (i =
0, · · · , n−1) and Fn is w-u-S-flat. Let K0 = ker(F0 →M). We have two u-S-exact
sequences 0 → K0 → F0 → M → 0 and 0 → Fn → Fn−1 → . . . → F1 → K0 → 0.
We note that w-u-S-fdR(K0) 6 n−1. Hence, by induction we have, TorRn (R/I,K0)
is u-S-torsion for any ideal I of R. Thus, it follows from [[5], Corollary 1.6], that
TorRn (R/I,M)) is u-S-torsion.
(2)⇒ (3). This is obvious.
(3) ⇒ (4). Let 0 → Fn → Fn−1 → · · · → F0 → M → 0 be an exact sequence.
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Set K0 = ker(F0 → M) and Ki = ker(Fi → Fi−1), where (i = 1, . . . , n − 1). Since
all F0, F1, . . . , Fi−1 are flat, TorR1 (R/I, Fn) ∼= TorRn+1(R/I,M) is u-S-torsion for all
finitely generated ideal I of R. Thus, Fn is a w-u-S-flat module by Proposition 2.3.
(4)⇒ (1). Trivial.
(3) ⇒ (5). Let 0 → Fn → Fn−1 → · · · → F0 → M → 0 be a u-S-exact sequence.
Set Ln = Fn and Li = Im(Fi → Fi−1), where (i = 1, . . . , n − 1). Then both
0 → Li+1 → Fi → Li → 0 and 0 → L1 → F0 → M → 0 are u-S-exact sequences.
By using [[5], Corollary 1.6] repeatedly, we can obtain that TorR1 (Fn, R/I) is u-S-
torsion for all finitely generated ideal I of R, which implies that Fn is w-u-S-flat by
Proposition 2.3.
(5)⇒ (6)⇒ (4) and (5)⇒ (7)⇒ (4). These implications are trivial.

(4) ⇒ (9). Let . . . → Pn → Pn−1
f−→ Pn−2 . . . → P0 → M → 0 be a projective

resolution of M . Set Fn = Ker(f). Then we have an exact sequence 0 → Fn →
Pn−1

f−→ Pn−2 . . .→ P0 →M → 0. By (4), Fn is w-u-S-flat. So (9) holds.
(9)⇒ (10)⇒ (1) and (9)⇒ (8)⇒ (1). These are obvious. 2

Corollary 3.4. Let R be a ring and S′ ⊆ S multiplicative subsets of R. Suppose
M is an R-module, then w-u-S-fdR(M) ≤ w-u-S′-fdR(M).

Proof. Suppose S′ ⊆ S are multiplicative subsets of R. Let M be an R-modules
and I be an ideal of R. If TorRn+1(R/I,M) is u-S′-torsion, then TorRn+1(R/I,M) is
u-S-torsion. Hence, by Proposition 3.3., we have the result. 2

Corollary 3.5. Let R be a ring, S a multiplicative subset of R and M an R-module.
Then, fdRS

(MS) ≤ w-u-S-fdR(M). Moreover, if S is composed of finite elements,
then w-u-S-fdR(M) = fdRS

(MS).

Proof. Let 0 → Fn → Fn−1 → . . . → F1 → F0 → M → 0 be an exact sequence,
where F0, F1, . . . , Fn−1 are flat R-modules. By localizing at S, we get an exact
sequence of RS-modules, 0 → (Fn)S → (Fn−1)S → . . . → (F1)S → (F0)S →
(M)S → 0. By Proposition 2.10, if Fn is w-u-S-flat, so (Fn)S is flat over RS , and
the converse if S composed of finite elements. Hence, the desired result follows.

The proof of the next proposition is standard homological algebra. Thus we
omit its proof.
Proposition 3.6. Let R be a ring, S be a multiplicative subset of R, and 0 →
M ′′ →M ′ →M → 0 be an exact sequence of R-modules. If two of w-u-S-fdR(M ′′),
w-u-S-fdR(M ′) and w-u-S-fdR(M) are finite, so is the third. Moreover

1. w-u-S-fdR(M ′′) ≤ max {w-u-S-fdR(M ′), w-u-S-fdR(M)− 1}.

2. w-u-S-fdR(M ′) ≤ max{w-u-S-fdR(M ′′), w-u-S-fdR(M)}.

3. w-u-S-fdR(M) ≤ max{w-u-S-fdR(M ′), w-u-S-fdR(M ′′) + 1}.

Corollary 3.7. Let R be a ring, S be a multiplicative subset of R, and 0 →
M ′′ → M ′ → M → 0 be an exact sequence of R-modules. If M ′ is w-u-S-flat and
w-u-S-fdR(M) > 0, then w-u-S-fdR(M) = w-u-S-fdR(M ′′) + 1.
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Proposition 3.8. Let R be a ring, S be a multiplicative subset of R, and {Mi} be
a finite family of R-modules. Then w-u-S-fdR(⊕iMi) = supi{w-u-S-fdR(Mi)}.

Proof. The proof is straightforward. 2

Proposition 3.9. Let R be a ring, S be a multiplicative subset of R, and n ≥ 0 be
a an integer. Then the following statements are equivalent:

1. w-u-S-w.gl.dim(R) ≤ n.

2. w-u-S-fdR(M) 6 n for all R-modules M .

3. w-u-S-fdR(R/J) 6 n for all ideals J of R.

4. TorRn+1(R/I,M) is u-S-torsion for any R-module M and any ideal I of R.

5. TorRn+1(R/I,M) is u-S-torsion for any R-module M and any finitely gener-
ated ideal I of R.

Consequently, we have

w-u-S-w.gl.dim(R) = sup{w-u-S-fdR(R/J) | J is an ideal of R}

Proof. (1)⇔ (2)⇒ (3) and (4)⇒ (5). The are obvious.
(2)⇒ (4) and (5)⇒ (2). These are immediate from Proposition 3.3.
(3)⇒ (1). Let J be an ideal of R, so w-u-S-fdR(R/J) 6 n by (3). By Proposition
3.3, TorRn+1(R/I,R/J) is u-S-torsion for any ideal I of R. Thus, there exists s ∈
S such that sTorRn+1(R/I,R/J) = 0 and so by [[5], Proposition 3.2], we have
u-S-w.gl.dim(R) ≤ n for any R-module M . Thus, w-u-S-w.gl.dim(R) ≤ n. 2

Next, we show that rings R with w-u-S-w.gl.dim(R) = 0 are exactly u-S-von
Neumann regular rings.
Proposition 3.10. Let R be a ring, S be a multiplicative subset of R. The following
are equivalent:

1. w-u-S-w.gl.dim(R) = 0.

2. Every R-module is w-u-S-flat.

3. R/I is w-u-S-flat for any ideal I of R.

4. R is a u-S-von Neumann regular ring.

Proof. The equivalence of (1), (2), and (3), follows from Proposition 3.9.
(2)⇔ (4). Follows from Proposition 2.5. 2

The proof of the follwing Proposition fllows from Proposition 3.9. Thus, we
omit its proof.
Proposition 3.11. Let R be a ring, S be a multiplicative subset of R. Then the
following are equivalent:
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1. w-u-S-w.gl.dim(R) ≤ 1.

2. Every submodule of w-u-S-flat R-module is w-u-S-flat.

3. Every submodule of flat R-module is w-u-S-flat.

4. Every ideal of R is w-u-S-flat.

Let θ : R → T be a ring homomorphism. Suppose S is a multiplicative subset
of R, then θ(S) = {θ(s)|s ∈ S} is a multiplicative subset of T .
Lemma 3.12. Let θ : R → T be a ring homomorphism, S a multiplicative subset
of R. Suppose L is a w-u-θ(S)-flat T -module. Then for any ideal I of R and
any n ≥ 0, TorRn (R/I, L) is u-S-isomorphic to TorRn (R/I, T ) ⊗T L. Consequently,
w-u-S-fdR(L) ≤ w-u-S-fdR(T ).
Proof. Similar to proof [[5], Lemma 4.1]. 2

Proposition 3.13. Let θ : R → T be a ring homomorphism, S a multiplicative
subset of R. Suppose M is an T -module. Then

w-u-S-fdR(M) ≤ w-u-θ(S)-fdT (M) + w-u-S-fdR(T ).

Proof. Suppose that w-u-θ(S)-fdT (M) = n <∞. If n = 0, then M is w-u-θ(S)-flat
over T . By Lemma 3.12, w-u-S-fdR(M) ≤ n+ w-u-S-fdR(T ).

Now we assume n > 0. Let 0 → A → F → M → 0 be an exact sequence
of T -modules, where F is a free T -module. Then w-u-θ(S)-fdT (A) = n − 1 by
Corollary 3.7. By induction, w-u-S-fdR(A) ≤ n − 1 + w-u-S-fdR(T ). Note that
w-u-S-fdR(T ) = w-u-S-fdR(F ). By Proposition 3.6, we have

w-u-S-fdR(M) 6 max{w-u-S-fdR(F ), w-u-S-fdR(A) + 1}
6 n+ w-u-S-fdR(T )

= w-u-θ(S)-fdT (M) + w-u-S-fdR(T )

2

Proposition 3.14. Let R be a ring, S a multiplicative subset of R and M an
R-module. Then, w-u-S-fdR[x](M [x]) = w-u-S-fdR(M).

Proof. Suppose that w-u-S-fdR(M) ≤ n. Then TorRn+1(R/I,M) is u-S-torsion
for any ideal I of R. Let I[x] be an ideal of R[x]. By [[1], Theorem 1.3.11],

we have Tor
R[x]
n+1((R/I)[x],M [x]) ∼= TorRn+1(R/I,M) ⊗R R[x]. And by [[3], Corol-

lary 2.6], we have TorRn+1(R/I,M) ⊗R R[x] is u-S-torsion since TorRn+1(R/I,M)

is u-S-torsion. Thus, Tor
R[x]
n+1((R/J)[x],M [x]) is u-S-torsion, which implies that,

w-u-S-fdR[x](M [x]) ≤ n by Proposition 3.3.
Conversely, Let 0 → Fn → . . . → F1 → F0 → M [x] → 0 be an exact sequence

with each Fi u-S-flat over R[x] (1 ≤ i ≤ n−1) and Fn w-u-S-flat over R[x]. Hence, it
is also a w-u-S-flat resolution of M [x] over R by Proposition 2.13. Then, by Propo-
sition 3.3, we have TorRn+1(R/I,M [x]) is u-S-torsion for any ideal I of R. It follows
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that sTorRn+1(R/I,M [x]) = s
⊕∞

n=1 TorRn+1(R/I,M) = 0. Hence, TorRn+1(R/I,M)
is u-S-torsion. Consequently, w-u-S-fdR(M) ≤ w-u-S-fdR[x](M [x]) by Proposition
3.3 again. 2
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