DOI QR코드

DOI QR Code

Wound-Induced Hair Follicle Neogenesis as a Promising Approach for Hair Regeneration

  • Chaeryeong Lim (Department of Life Sciences, Pohang University of Science and Technology (POSTECH)) ;
  • Jooyoung Lim (Department of Life Sciences, Pohang University of Science and Technology (POSTECH)) ;
  • Sekyu Choi (Department of Life Sciences, Pohang University of Science and Technology (POSTECH))
  • 투고 : 2023.04.29
  • 심사 : 2023.08.16
  • 발행 : 2023.10.31

초록

The mammalian skin contains hair follicles, which are epidermal appendages that undergo periodic cycles and exhibit mini-organ features, such as discrete stem cell compartments and different cellular components. Wound-induced hair follicle neogenesis (WIHN) is the remarkable ability to regenerate hair follicles after large-scale wounding and occurs in several adult mammals. WIHN is comparable to embryonic hair follicle development in its processes. Researchers are beginning to identify the stem cells that, in response to wounding, develop into neogenic hair follicles, as well as to understand the functions of immune cells, mesenchymal cells, and several signaling pathways that are essential for this process. WIHN represents a promising therapeutic approach to the reprogramming of cellular states for promoting hair follicle regeneration and preventing scar formation. In the scope of this review, we investigate the contribution of several cell types and molecular mechanisms to WIHN.

키워드

과제정보

We thank the members of the Choi laboratory for their helpful discussions and comments on the manuscript. This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (NRF-2022R1C1C1011895 and NRF2022M3A9D3016848), Basic Science Research Institute Fund (NRF-2021R1A6A1A10042944), and Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (No. 2021R1A6C101A390). This research has been supported by a POSCO Science Fellowship of the POSCO TJ Park Foundation. This work was also supported by a BK21 FOUR Research Fellowship funded by the Ministry of Education, Republic of Korea.

참고문헌

  1. Amiri, N., Golin, A.P., Jalili, R.B., and Ghahary, A. (2022). Roles of cutaneous cell-cell communication in wound healing outcome: an emphasis on keratinocyte-fibroblast crosstalk. Exp. Dermatol. 31, 475-484. https://doi.org/10.1111/exd.14516
  2. Andl, T., Reddy, S.T., Gaddapara, T., and Millar, S.E. (2002). WNT signals are required for the initiation of hair follicle development. Dev. Cell 2, 643-653. https://doi.org/10.1016/S1534-5807(02)00167-3
  3. Arango Duque, G. and Descoteaux, A. (2014). Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol. 5, 491.
  4. Beyer, C., Schramm, A., Akhmetshina, A., Dees, C., Kireva, T., Gelse, K., Sonnylal, S., de Crombrugghe, B., Taketo, M.M., Distler, O., et al. (2012). β-catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis. Ann. Rheum. Dis. 71, 761-767. https://doi.org/10.1136/annrheumdis-2011-200568
  5. Billingham, R. and Russell, P. (1956). Incomplete wound contracture and the phenomenon of hair neogenesis in rabbits' skin. Nature 177, 791-792. https://doi.org/10.1038/177791b0
  6. Blanpain, C. and Fuchs, E. (2009). Epidermal homeostasis: a balancing act of stem cells in the skin. Nat. Rev. Mol. Cell Biol. 10, 207-217. https://doi.org/10.1038/nrm2636
  7. Cotsarelis, G. (2006). Epithelial stem cells: a folliculocentric view. J. Invest. Dermatol. 126, 1459-1468. https://doi.org/10.1038/sj.jid.5700376
  8. Cotsarelis, G., Sun, T.T., and Lavker, R.M. (1990). Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329-1337. https://doi.org/10.1016/0092-8674(90)90696-C
  9. Deonarine, K., Panelli, M.C., Stashower, M.E., Jin, P., Smith, K., Slade, H.B., Norwood, C., Wang, E., Marincola, F.M., and Stroncek, D.F. (2007). Gene expression profiling of cutaneous wound healing. J. Transl. Med. 5, 11.
  10. Driskell, R.R., Lichtenberger, B.M., Hoste, E., Kretzschmar, K., Simons, B.D., Charalambous, M., Ferron, S.R., Herault, Y., Pavlovic, G., Ferguson-Smith, A.C., et al. (2013). Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504, 277-281. https://doi.org/10.1038/nature12783
  11. Ellis, S., Lin, E.J., and Tartar, D. (2018). Immunology of wound healing. Curr. Dermatol. Rep. 7, 350-358. https://doi.org/10.1007/s13671-018-0234-9
  12. Gallucci, R.M., Simeonova, P.P., Matheson, J.M., Kommineni, C., Guriel, J.L., Sugawara, T., and Luster, M.I. (2000). Impaired cutaneous wound healing in interleukin-6-deficient and immunosuppressed mice. FASEB J. 14, 2525-2531. https://doi.org/10.1096/fj.00-0073com
  13. Gay, D., Kwon, O., Zhang, Z., Spata, M., Plikus, M.V., Holler, P.D., Ito, M., Yang, Z., Treffeisen, E., Kim, C.D., et al. (2013). Fgf9 from dermal γδ T cells induces hair follicle neogenesis after wounding. Nat. Med. 19, 916-923. https://doi.org/10.1038/nm.3181
  14. Ge, Y., Miao, Y., Gur-Cohen, S., Gomez, N., Yang, H., Nikolova, M., Polak, L., Hu, Y., Verma, A., Elemento, O., et al. (2020). The aging skin microenvironment dictates stem cell behavior. Proc. Natl. Acad. Sci. U. S. A. 117, 5339-5350. https://doi.org/10.1073/pnas.1901720117
  15. Gong, L., Xiao, J., Li, X., Li, Y., Gao, X., and Xu, X. (2020). IL-36α promoted wound induced hair follicle neogenesis via hair follicle stem/progenitor cell proliferation. Front. Cell Dev. Biol. 8, 627.
  16. Hamburg, E.J. and Atit, R.P. (2012). Sustained β-catenin activity in dermal fibroblasts is sufficient for skin fibrosis. J. Invest. Dermatol. 132, 2469-2472. https://doi.org/10.1038/jid.2012.155
  17. Harn, H.I., Wang, S.P., Lai, Y.C., Van Handel, B., Liang, Y.C., Tsai, S., Schiessl, I.M., Sarkar, A., Xi, H., Hughes, M., et al. (2021). Symmetry breaking of tissue mechanics in wound induced hair follicle regeneration of laboratory and spiny mice. Nat. Commun. 12, 2595.
  18. He, R., Yin, H., Yuan, B., Liu, T., Luo, L., Huang, P., Dai, L., and Zeng, K. (2017). IL-33 improves wound healing through enhanced M2 macrophage polarization in diabetic mice. Mol. Immunol. 90, 42-49. https://doi.org/10.1016/j.molimm.2017.06.249
  19. Hsu, Y.C., Pasolli, H.A., and Fuchs, E. (2011). Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 144, 92-105. https://doi.org/10.1016/j.cell.2010.11.049
  20. Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G., and Birchmeier, W. (2001). β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105, 533-545. https://doi.org/10.1016/S0092-8674(01)00336-1
  21. Ito, M., Liu, Y., Yang, Z., Nguyen, J., Liang, F., Morris, R.J., and Cotsarelis, G. (2005). Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat. Med. 11, 1351-1354. https://doi.org/10.1038/nm1328
  22. Ito, M., Yang, Z., Andl, T., Cui, C., Kim, N., Millar, S.E., and Cotsarelis, G. (2007). Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447, 316-320. https://doi.org/10.1038/nature05766
  23. Jameson, J., Ugarte, K., Chen, N., Yachi, P., Fuchs, E., Boismenu, R., and Havran, W.L. (2002). A role for skin γδ T cells in wound repair. Science 296, 747-749. https://doi.org/10.1126/science.1069639
  24. Jameson, J.M., Cauvi, G., Sharp, L.L., Witherden, D.A., and Havran, W.L. (2005). γδ T cell-induced hyaluronan production by epithelial cells regulates inflammation. J. Exp. Med. 201, 1269-1279. https://doi.org/10.1084/jem.20042057
  25. Jiang, T.X., Harn, H.I.C., Ou, K.L., Lei, M., and Chuong, C.M. (2019). Comparative regenerative biology of spiny (Acomys cahirinus) and laboratory (Mus musculus) mouse skin. Exp. Dermatol. 28, 442-449. https://doi.org/10.1111/exd.13899
  26. Joost, S., Jacob, T., Sun, X., Annusver, K., La Manno, G., Sur, I., and Kasper, M. (2018). Single-cell transcriptomics of traced epidermal and hair follicle stem cells reveals rapid adaptations during wound healing. Cell Rep. 25, 585-597.e7. https://doi.org/10.1016/j.celrep.2018.09.059
  27. Kasuya, A., Ito, T., and Tokura, Y. (2018). M2 macrophages promote wound-induced hair neogenesis. J. Dermatol. Sci. 91, 250-255. https://doi.org/10.1016/j.jdermsci.2018.05.004
  28. Kim, D., Chen, R., Sheu, M., Kim, N., Kim, S., Islam, N., Wier, E.M., Wang, G., Li, A., Park, A., et al. (2019). Noncoding dsRNA induces retinoic acid synthesis to stimulate hair follicle regeneration via TLR3. Nat. Commun. 10, 2811.
  29. Kim, J., Ryu, S., and Kim, H.Y. (2021). Innate lymphoid cells in tissue homeostasis and disease pathogenesis. Mol. Cells 44, 301-309. https://doi.org/10.14348/molcells.2021.0053
  30. Kim, S.Y. and Nair, M.G. (2019). Macrophages in wound healing: activation and plasticity. Immunol. Cell Biol. 97, 258-267. https://doi.org/10.1111/imcb.12236
  31. Kligman, A.M. and Strauss, J.S. (1956). The formation of vellus hair follicles from human adult epidermis. J. Invest. Dermatol. 27, 19-23. https://doi.org/10.1038/jid.1956.71
  32. Landen, N.X., Li, D., and Stahle, M. (2016). Transition from inflammation to proliferation: a critical step during wound healing. Cell. Mol. Life Sci. 73, 3861-3885. https://doi.org/10.1007/s00018-016-2268-0
  33. Le, H., Kleinerman, R., Lerman, O.Z., Brown, D., Galiano, R., Gurtner, G.C., Warren, S.M., Levine, J.P., and Saadeh, P.B. (2008). Hedgehog signaling is essential for normal wound healing. Wound Repair Regen. 16, 768-773. https://doi.org/10.1111/j.1524-475X.2008.00430.x
  34. Leavitt, T., Hu, M.S., Marshall, C.D., Barnes, L.A., Lorenz, H.P., and Longaker, M.T. (2016). Scarless wound healing: finding the right cells and signals. Cell Tissue Res. 365, 483-493. https://doi.org/10.1007/s00441-016-2424-8
  35. Lee, S.H., Yoon, J., Shin, S.H., Zahoor, M., Kim, H.J., Park, P.J., Park, W.S., Min, D.S., Kim, H.Y., and Choi, K.Y. (2012). Valproic acid induces hair regeneration in murine model and activates alkaline phosphatase activity in human dermal papilla cells. PLoS One 7, e34152.
  36. Lim, C.H., Sun, Q., Ratti, K., Lee, S.H., Zheng, Y., Takeo, M., Lee, W., Rabbani, P., Plikus, M.V., Cain, J.E., et al. (2018). Hedgehog stimulates hair follicle neogenesis by creating inductive dermis during murine skin wound healing. Nat. Commun. 9, 4903.
  37. Lin, Z.Q., Kondo, T., Ishida, Y., Takayasu, T., and Mukaida, N. (2003). Essential involvement of IL-6 in the skin wound-healing process as evidenced by delayed wound healing in IL-6-deficient mice. J. Leukoc. Biol. 73, 713-721. https://doi.org/10.1189/jlb.0802397
  38. Martin, P. (1997). Wound healing--aiming for perfect skin regeneration. Science 276, 75-81. https://doi.org/10.1126/science.276.5309.75
  39. Mathur, A.N., Zirak, B., Boothby, I.C., Tan, M., Cohen, J.N., Mauro, T.M., Mehta, P., Lowe, M.M., Abbas, A.K., Ali, N., et al. (2019). Treg-cell control of a CXCL5-IL-17 inflammatory axis promotes hair-follicle-stem-cell differentiation during skin-barrier repair. Immunity 50, 655-667.e4. https://doi.org/10.1016/j.immuni.2019.02.013
  40. Millar, S.E. (2002). Molecular mechanisms regulating hair follicle development. J. Invest. Dermatol. 118, 216-225. https://doi.org/10.1046/j.0022-202x.2001.01670.x
  41. Morris, R.J., Liu, Y., Marles, L., Yang, Z., Trempus, C., Li, S., Lin, J.S., Sawicki, J.A., and Cotsarelis, G. (2004). Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol. 22, 411-417. https://doi.org/10.1038/nbt950
  42. Muller-Rover, S., Handjiski, B., van der Veen, C., Eichmuller, S., Foitzik, K., McKay, I.A., Stenn, K.S., and Paus, R. (2001). A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J. Invest. Dermatol. 117, 3-15. https://doi.org/10.1046/j.0022-202x.2001.01377.x
  43. Myung, P.S., Takeo, M., Ito, M., and Atit, R.P. (2013). Epithelial Wnt ligand secretion is required for adult hair follicle growth and regeneration. J. Invest. Dermatol. 133, 31-41. https://doi.org/10.1038/jid.2012.230
  44. Nelson, A.M., Reddy, S.K., Ratliff, T.S., Hossain, M.Z., Katseff, A.S., Zhu, A.S., Chang, E., Resnik, S.R., Page, C., Kim, D., et al. (2015). dsRNA released by tissue damage activates TLR3 to drive skin regeneration. Cell Stem Cell 17, 139-151. https://doi.org/10.1016/j.stem.2015.07.008
  45. Rahmani, W., Liu, Y., Rosin, N.L., Kline, A., Raharjo, E., Yoon, J., Stratton, J.A., Sinha, S., and Biernaskie, J. (2018). Macrophages promote wound-induced hair follicle regeneration in a CX3CR1- and TGF-β1-dependent manner. J. Invest. Dermatol. 138, 2111-2122. https://doi.org/10.1016/j.jid.2018.04.010
  46. Rognoni, E., Gomez, C., Pisco, A.O., Rawlins, E.L., Simons, B.D., Watt, F.M., and Driskell, R.R. (2016). Inhibition of β-catenin signalling in dermal fibroblasts enhances hair follicle regeneration during wound healing. Development 143, 2522-2535. https://doi.org/10.1242/dev.131797
  47. Rousselle, P., Braye, F., and Dayan, G. (2019). Re-epithelialization of adult skin wounds: cellular mechanisms and therapeutic strategies. Adv. Drug Deliv. Rev. 146, 344-365. https://doi.org/10.1016/j.addr.2018.06.019
  48. Ryu, Y.C., Lee, D.H., Shim, J., Park, J., Kim, Y.R., Choi, S., Bak, S.S., Sung, Y.K., Lee, S.H., and Choi, K.Y. (2021). KY19382, a novel activator of Wnt/β-catenin signalling, promotes hair regrowth and hair follicle neogenesis. Br. J. Pharmacol. 178, 2533-2546. https://doi.org/10.1111/bph.15438
  49. Sawamura, D., Meng, X., Ina, S., Sato, M., Tamai, K., Hanada, K., and Hashimoto, I. (1998). Induction of keratinocyte proliferation and lymphocytic infiltration by in vivo introduction of the IL-6 gene into keratinocytes and possibility of keratinocyte gene therapy for inflammatory skin diseases using IL-6 mutant genes. J. Immunol. 161, 5633-5639. https://doi.org/10.4049/jimmunol.161.10.5633
  50. Schneider, M.R., Schmidt-Ullrich, R., and Paus, R. (2009). The hair follicle as a dynamic miniorgan. Curr. Biol. 19, R132-R142. https://doi.org/10.1016/j.cub.2008.12.005
  51. Schultz, G., Rotatori, D.S., and Clark, W. (1991). EGF and TGF-alpha in wound healing and repair. J. Cell. Biochem. 45, 346-352. https://doi.org/10.1002/jcb.240450407
  52. Seifert, A.W., Kiama, S.G., Seifert, M.G., Goheen, J.R., Palmer, T.M., and Maden, M. (2012). Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature 489, 561-565. https://doi.org/10.1038/nature11499
  53. Seifert, A.W. and Maden, M. (2014). New insights into vertebrate skin regeneration. Int. Rev. Cell Mol. Biol. 310, 129-169. https://doi.org/10.1016/B978-0-12-800180-6.00004-9
  54. Sennett, R. and Rendl, M. (2012). Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. Semin. Cell Dev. Biol. 23, 917-927. https://doi.org/10.1016/j.semcdb.2012.08.011
  55. Snippert, H.J., Haegebarth, A., Kasper, M., Jaks, V., van Es, J.H., Barker, N., van de Wetering, M., van den Born, M., Begthel, H., Vries, R.G., et al. (2010). Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327, 1385-1389. https://doi.org/10.1126/science.1184733
  56. Sun, D.P., Yeh, C.H., So, E., Wang, L.Y., Wei, T.S., Chang, M.S., and Hsing, C.H. (2013). Interleukin (IL)-19 promoted skin wound healing by increasing fibroblast keratinocyte growth factor expression. Cytokine 62, 360-368. https://doi.org/10.1016/j.cyto.2013.03.017
  57. Taylor, G., Lehrer, M.S., Jensen, P.J., Sun, T.T., and Lavker, R.M. (2000). Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102, 451-461. https://doi.org/10.1016/S0092-8674(00)00050-7
  58. Wang, X., Chen, H., Tian, R., Zhang, Y., Drutskaya, M.S., Wang, C., Ge, J., Fan, Z., Kong, D., Wang, X., et al. (2017). Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF. Nat. Commun. 8, 14091.
  59. Wier, E.M. and Garza, L.A. (2020). Through the lens of hair follicle neogenesis, a new focus on mechanisms of skin regeneration after wounding. Semin. Cell Dev. Biol. 100, 122-129. https://doi.org/10.1016/j.semcdb.2019.10.002
  60. Williams, K.L. and Garza, L.A. (2021). Diverse cellular players orchestrate regeneration after wounding. Exp. Dermatol. 30, 605-612. https://doi.org/10.1111/exd.14248
  61. Xue, Y., Lim, C.H., Plikus, M.V., Ito, M., Cotsarelis, G., and Garza, L.A. (2022). Wound-induced hair neogenesis model. J. Invest. Dermatol. 142, 2565-2569. https://doi.org/10.1016/j.jid.2022.07.013
  62. Yin, H., Li, X., Hu, S., Liu, T., Yuan, B., Gu, H., Ni, Q., Zhang, X., and Zheng, F. (2013). IL-33 accelerates cutaneous wound healing involved in upregulation of alternatively activated macrophages. Mol. Immunol. 56, 347-353. https://doi.org/10.1016/j.molimm.2013.05.225
  63. Yoo, H.J., Kim, N.Y., and Kim, J.H. (2021). Current understanding of the roles of CD1a-restricted T cells in the immune system. Mol. Cells 44, 310-317. https://doi.org/10.14348/molcells.2021.0059
  64. Zhang, Y.V., Cheong, J., Ciapurin, N., McDermitt, D.J., and Tumbar, T. (2009). Distinct self-renewal and differentiation phases in the niche of infrequently dividing hair follicle stem cells. Cell Stem Cell 5, 267-278. https://doi.org/10.1016/j.stem.2009.06.004