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The fibronectin concentration that optimally maintains  
porcine satellite cells

Jae Ho Han1, Si Won Jang1, Ye Rim Kim2, Hoon Jang3, Kwan Seob Shim1,4, and Hyun Woo Choi1,2,*

Objective: ‘Cultured meat’ has been suggested as means of solving the problems associated 
with overpopulation and gas emissions. Satellite cells are a major component in the 
production of cultured meat; however, these cells cannot be maintained in vitro over 
long periods. Fibronectin is a glycoprotein that affects biological processes such as cell 
adhesion, differentiation, and migration. Unfortunately, the characteristics of porcine 
satellite cells grown in a long-term culture when exposed to fibronectin-coated dishes 
are unknown. The objective of this study was to investigate the appropriate concentration 
of fibronectin coated dishes for proliferation and maintenance of porcine satellite cells 
at long-term culture.
Methods: In this study, we isolated the satellite cells and fibroblast cells with pre-plating 
method. We next analyzed the cell doubling time, cell cycle, and rate of expressed paired 
box 7 (Pax7) and myogenic differentiation 1 (MyoD1) in porcine satellite cells cultured 
with 20 μg/mL of fibronectin-, gelatin-, and non-coated dishes at early and late passage. 
We then analyzed the proliferation of porcine satellite cells with various concentrations of 
mixed gelatin/fibronectin. We next determined the optimal concentration of fibronectin 
that would encourage proliferation and maintenance of porcine satellite cells in a long-
term culture.
Results: Doubling time was lowest when 20 μg/mL of fibronectin was used (as tested 
during an early and late passage). Levels of expressed Pax7 and MyoD1, assessed using 
immunocytochemistry, were highest in cells grown using fibronectin-coated dishes. The 
proliferation of gelatin/fibronectin mixed coatings had no significant effect on porcine 
satellite cells. The concentration of 5 μg/mL fibronectin coated dishes showed the lowest 
doubling time and maintained expression of Pax7.
Conclusion: Fibronectin with 5μg/mL effectively maintains porcine satellite cells, a 
discovery that will be of interest to those developing the next generation of artificial meats. 
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INTRODUCTION

Maintaining satellite cells in vitro is a critical component of the development of cultured 
meats. A number of countries have tried to solve the problems of environmental pollution 
and inadequate food supply, both of which stem from an increasing population [1]. Cultured 
meat (i.e., artificial meat) is a product intended to solve these problems [2]. Cultured meat 
requires a continuous supply of satellite cells. However, maintaining satellite cells in vitro 
remains challenging [3].
  Satellite cells are muscle stem cells which can differentiate into muscle fiber. Satellite 
cells are located between the muscle fiber and basal lamina [4]. These satellite cells and 
muscle fibers are surrounded by blood vessels and an extra-cellular matrix (ECM), known 
collectively as the ‘niche’ or ‘micro-environment’. Within this niche, satellite cells are 
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activated, and a signal governs their proliferation and dif-
ferentiation into muscle fibers. As part of this process, collagen, 
laminin and fibronectin, part of the ECM, mediate cell-cell 
adhesion with integrin receptors and regulates activation 
of the signaling mechanism [5,6]. 
  Researchers have attempted to develop techniques that 
effectively maintain and proliferate satellite cell in vitro. Growth 
factors within the satellite cells control proliferation and dif-
ferentiation. Fibroblast growth factor (FGF) is known to be 
required for maintenance and regeneration of skeletal muscle 
[7]. β-Catenin, which is canonical of Wnt signals, interacts 
with myogenic differentiation (MyoD) and regulates differ-
entiation [8]. It has also been reported that insulin like growth 
factor 1 (IGF-1) induces proliferation and muscle hypertrophy 
[9]. Within satellite cells, interleukin 6 is upregulated during 
muscle regeneration and promotes myogenic satellite cell 
proliferation [10]. Further studies have been conducted to 
examine cell signals within satellite cells. The mitogen-acti-
vated protein kinase (MAPK) pathway has been identified 
as the pathway by which myogenesis is initiated [11,12]. It 
has also been found that blocking the p38 MAPK signal 
pathway in bovine satellite cells enhances proliferation and 
paired box 7 (Pax7) expression and is essential to maintaining 
satellite cells and muscle regeneration [13].  
  ECM materials such as laminin, fibronectin, collagen are 
widely used in vitro on the coating dish in cell cultures to 
attach the cells and mimic the microenvironment in which 
cells interact [14]. Fibronectin is a glycoprotein that is pro-
duced in variety of cells, including fibroblasts, chondrocytes, 
myocytes, and synovial cells [15]. Fibronectin regulates cell 
behavior such as adhesion and migration by binding to inte-
grin receptors [16]. It has been reported that different 
concentrations of ECM result in cells with divergent char-
acteristics. A high density of collagen at the fibroblast increases 
the spreading capability, however, concentration above a 
certain level results in less cell spreading [17]. Osteoblast 
morphologies on the hydroxyapatite surface are also known 
to change depending on fibronectin concentration. Two 
types of oblates exist: end-on and an extended side-down 
configuration. Each has a respective size of 5,770 ng/cm2 
and 168 ng/cm2. Each type is associated with morphological 
changes and adhesion capability. A low concentration of fi-
bronectin on the hydroxyapatite attaches in a side-down 
configuration, while a high concentration of fibronectin on 
the hydroxyapatite attaches in an end-one configuration. 
As a result, MG63 cells on hydroxyapatite with a low con-
centration of fibronectin attach and spread better than when a 
high concentration of fibronectin is present [18]. However, 
the characteristics of porcine satellite cells grown through 
exposure to fibronectin in a long-term culture have re-
mained unclear. 
  To determine the characteristics of porcine satellite cells 

grown on fibronectin-coated dishes, we compared short 
and long-term culture dishes with high-concentrations (20 
μg/mL) of fibronectin, gelatin, and non-coated dishes for 
proliferation, cell cycle and immunocytochemistry (ICC). 
We also compared the proliferation of gelatin/fibronectin 
mixtures which had positive effect on chondorogenesis 
[19]. Next, we compared proliferation and maintenance 
when various concentrations of fibronectin were used with 
a long-term culture. 
  We ultimately found that satellite cells cultured on fibro-
nectin-coated dishes showed greater proliferation and were 
better maintained. We then optimized the concentration of 
fibronectin for a long-term culture. We also observed no sig-
nificant boost to proliferation to mixtures of gelatin and 
fibronectin. Fibronectin-coated satellite cells were effectively 
proliferated when 5 μg/mL and 20 μg/mL fibronectin were 
used during the long-term culture. We also showed that 
porcine satellite cells could be effectively maintained by ex-
pressing high levels of the PAX7 gene in 1 μg/mL or 5 μg/mL 
of fibronectin in long-term culture. Surprisingly, 20 μg/mL 
of the fibronectin coated satellite cell exhibited the lowest 
Pax7 levels. In summary, 5 μg/mL was the most effective 
concentration at which fibronectin proliferated and was 
maintained. 
  Ensuring the sustainable culturing of satellite cells in vitro 
to produce cultured meat is essential. We found that the 
concentration of ECM changes the porcine satellite cells 
characteristics when grown in a long-term culture. Our re-
sult suggests that fibronectin at an appropriate concentration 
is a viable ECM on which to base future studies of satellite 
cells. Our study also provides an alternative method of main-
taining porcine satellite cells.

MATERIALS AND METHODS

Animal care
All animal procedures were approved by the Animal Ethics 
Committee of Jeonbuk National University (JBNU,2020-
0147). All experiments were performed in accordance with 
the ethical guidelines and regulations of Jeonbuk National 
University.

Porcine satellite cell isolation
Muscle tissues were isolated from the front legs of a 1 day 
old porcine. 8 muscle tissues were cut off to 1 g and minced 
with surgical scissors. Tissues were then dissociated with Di-
gest Solution containing Dulbecco's modified eagle medium 
(DMEM)/F12 (#11320-033; Gibco, Carlsbad, CA, USA), 
0.25% Trypsin-EDTA (TE) (#25200-072; Gibco, USA), 10% 
penicillin-streptomycin (PS) (#15140-122L; Gibco, USA), 
Collagenase D (#11088858001, 2 mg/mL; Roche, Indianapolis, 
IN, USA), and DispaseII (#4942078001, 1 U/mL; Roche, 
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USA) for 30 min at 37°C. The mixture was titrated every 5 
min. After dissociation the muscle cells were filtered through 
a 100 μm strainer followed by a 70 μm cell strainer. The cells 
were neutralized by Neutralized media containing DMEM 
(#11885092; Gibco, USA), 15% fetal bovine serum (FBS) 
(16000-044), and 1% PS. Cells were centrifuged at 1,500 rpm 
for 5 min at 4°C. The pellet was then reconstituted with ACK 
lysing buffer (#A10492-01; Gibco, USA) by removing red 
blood cells and incubating in ice for 5 min. Then cells were 
again centrifuged at 1,500 rpm for 5 min at 4°C. Cells were 
then reconstituted with culture media containing (DMEM/
F12, 15% FBS 1% penicillin-streptomycin-glutamine (PSG) 
(#10378016; Gibco, USA) and basic fibroblast growth factor 
(bFGF) (#13256-029, 10 ng/mL; Gibco, USA). The porcine 
satellite cells were separated using the pre-plate method. 
Cells were seeded in a 100 mm dish coated with 0.1% gelatin 
(G1319; Sigma-Aldrich, St. Louis, MO, USA) and incubated 
at 37°C in a 5% CO2 incubator for 1 hour. After 1 hour, the 
medium (suspension cell) was collected and transferred to 
a new 100 mm dish coated with 0.1% gelatin. 

Porcine satellite cell culture 
Cells were coated with 0.1% gelatin and various concentra-
tions of fibronectin (#FC010; Sigma-Aldrich, USA). Cells 
were seeded in 60 mm and 35 mm dishes, with 4 wells and 
96 wells, in 5×105, 1.8×105, 5×104, and 5×103 configurations. 
Media was changed every day with culture media and pas-
saged every 3 days.

Doubling time analysis
Porcine satellite cells were seeded in 35 mm dishes with 0.1% 
gelatin, various concentrations of fibronectin (1, 5, 20 μg/mL) 
and non-coated. Culture media was changed every day and 
cells were counted after 3 days of culture. After 3 days, cells 
were detached by 0.25% TE and each sample was counted 
using an inverted microscope with a hemocytometer. The 
experiment was performed in triplicate. The time taken to 
double three times were measured using a doubling time 
calculation:  

  Doubling time
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Cell growth analysis
Porcine satellite cells were seeded in a 96 well with various 
concentrations of gelatin/fibronectin mixes. Porcine satellite 
cells were seeded in every well at a density of 5×103 cells. 
Cells were cultured in culture media for 3 days. Growth was 
identified using a cell counting Kit-8 (CCK-8) (#CK04-11; 
Dojindo, Kumamoto, Japan). Cells were treated with CCK-
8 solution consistent with the manufacture instructions 

and incubated at 37°C for 3 hours. Growth was measured 
using a microplate reader with a wavelength of 450 nm. 

Cell cycle analysis
Gelatin, fibronectin, and various concentrations of gelatin/
fibronectin mix were collected at passage 2 (early) and pas-
sage 7 (late). Porcine satellite cells were seeded in a 35 mm 
dish with a density of 18×104. For cell cycle analysis, passage 
2 cells and passage 7 cells were detached using 0.25 TE and 
neutralized with neutralize media. Cells were then washed 
with cold PBS (containing 1% bovine serum albumin [BSA]) 
and fixed with 70% ethyl alcohol for 5 min at 4°C. Cells were 
centrifuged 850×g at 4°C for 5 min. Ethanol was removed 
and twice washed with PBS. After washing, 100 μg/mL of 
RNase A (#70856; Sigma-Aldrich, USA) was added, after 
which 25 μg/mL of propiodium iodide (PI) (#421301; Bio 
Legend, San Diego, CA, USA) was added with PBS. Cells 
were then analyzed with an FACS Calibur (Becton Dickson, 
Franklin, NJ, USA) with a blue laser (excitation 488 nm) in-
stalled at the Center for University Research Facility (CURF) 
at Jeonbuk National University. 

Immunofluorescence staining and the ratio of cultured 
porcine satellite cells
Gelatin, fibronectin, and non-coated Passage 2 and Passage 
7 cells were seeded in a 4 well plate with a density of 5×104 
and cultured for three days. After three days, cells were twice 
washed in PBS. Cells were fixed overnight by 4% parafor-
maldehyde at 4°C. After fixation cells were washed with 
PBS three times, then incubated in blocking solution con-
taining Washing solution + 3% BSA (Bovogen, Keilor East, 
Australia, Bovostar) and washing solution, 0.3% Triton X-100 
(10010-023; Gibco, USA), as well as PBS, for 2 hour. After 
blocking, cells were washed with Washing solution. Cells 
were then stained overnight with primary antibodies against 
anti-MyoD1 (polyclonal, 1:200; Proteintech, Rosement, IL, 
USA) and anti-Pax7 (Pax7 monoclonal, 1:50; DHSB, Iowa, 
IA, USA) at 4°C. Cells were incubated with Alexa488 anti-
mouse (Molecular Probes; Eugene, OR, USA) antibodies 
and Alexa586 anti-rabbit (Molecular Probe, USA) antibodies at 
room temperature for 2 hours. 4’6-diamidino-2-phenylindole 
(DAPI) with 1 μg/mL was stained for 10 min. After DAPI 
staining, cells were washed with washing solution for 10 min. 
The analysis was performed with a Leica 9900, with images 
captured in triplicate. Three students counted green-, red-, 
and blue-fluorescent cells from the same captured images. 
The outcomes are presented as number of Pax7 fluorescence 
/ number of DAPI fluorescence, and number of MyoD1 
fluorescence / DAPI fluorescence.

Gene expression analysis by quantitative real-time 
polymerase chain reaction
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RNA was extracted from cells using an AccuPrep Universal 
RNA Extraction kit (Bioneer, Seoul, Korea). The 1 μg of total 
RNA was reverse transcribed with an Accupower Cycle-
Script RT Premix (Bioneer, Korea). Relative gene expression 
was performed in triplicate using Powerup SYBR Green 
Master Mix (Applied Biosystems, Waltham, MA, USA). The 
primers used for quantitative real-time polymerase chain re-
action (qRT-PCR) were GapDH sense 5’-ACCCAGAAGA 
CTGTGGATGG-3’, GapDH antisense 5’-AAGCAGGGAT 
GATGTTCTGG-3’, Pax7 sense 5’-TCCAGCTACTCCGA 
CAGCTT-3’, Pax7 antisense 5’-TGCTCAGAATGCTCAT 
CACC-3’, MyoD1 sense 5’-GTGCAAACGCAAGACCAC 
TA -3’, and MyoD1 antisense 5’-GCTGATTCGGGTTGC 
TAGAC -3’.

Statistical analysis 
All experiments were performed three times and all data 
was collated and expressed as means±standard error of the 
mean. Statistical tests were conducted using SAS software 
version 9.4 (SAS Institute Inc., Cary, NC, USA), and tests for 
statistical differences were performed with Student’s t-test or 
analysis of variance, followed by Duncan’s multiple range 

test for post-hoc comparisons. A p-value<0.05 was regarded 
as significant. 

RESULTS

Porcine satellite cells grown on fibronectin-coated 
dishes were effectively proliferated in vitro
Porcine muscles were isolated into satellite cells and fibro-
blasts using pre-plating methods (Figure 1A). A previous 
report showed that Pax7 is a core regulation factor of satellite 
cells and Myod1 is an implicated myogenic regulator factor 
[20,21]. The number of Pax7 and MyoD1 positive cells in 
the isolated and cultured cells was measured by ICC. Levels 
of expressed Pax7 were higher in the satellite cell than in the 
fibroblast (p<0.0001) (Figure 1B) (satellite cell: 72% [±0.21], 
fibroblast cell 9.1% [±0.02]). Porcine satellite cells expressed 
MYOD1 gene at 64% (±0.16) in total cultured cell while fi-
broblast cells expressed MYOD1 gene at 10% (±0.02) in total 
cultured cell (p<0.001) (Figure 1B). This result indicates that 
porcine satellite cells were effectively isolated from muscle 
tissues by pre-plating.
  To determine proliferation capability of 0.1% gelatin-, fi-

Figure 1. Comparative analysis of isolated porcine satellite cells form muscle tissue and comparative analysis of cell morphology, doubling time, 
and cell cycle with gelatin-, 20 μg/mL fibronectin (fn)– and non-coated satellite cells. (A) Isolation of porcine satellite cell using pre-plating. Mor-
phology and immunocytochemistry of satellite cells and fibroblast cells with Pax7 (green), MyoD1 (red), and DAPI (blue). Scale bar 100 μm. (B) 
Rate of expressed Pax7 and Myod1 in total nuclei (DAPI) at satellite cell and fibroblast cell. n = 3, The asterisks represent significant differences in 
expression levels (Student’s t-test): * p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001. Error bars show±standard deviation. (C) Morphology of satel-
lite cell from various ECMs at early passage (P2) and late passage (P7). Scale bar 100 μm. (D) Doubling time of satellite cell in various ECM at 
early passage (P2) and late passage (P7). (E) The cell cycle of the satellite cell was stained with propidium iodide (PI) and analyzed with flow cy-
tometry. ECM, extra-cellular matrix; Pax7, paired box 7; Myod1, myogenic differentiation 1; DAPI, 4’6-diamidino-2-phenylindole.
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bronectin (20 μg/mL)- and non-coated dishes, we measured 
cell doubling time. The doubling time in the porcine satellite 
cells was measured at early passage (P2) and late passage (P7) 
in each of the ECM. The doubling time of gelatin-coated 
satellite cells had increased from 30.2 (±0.33 h) to 55.3 (±0.68 h) 
between the early and late passage. The time for the non-coated 
satellite cells increased from 85 h (±18.6) to 204.4 h (±36.6) 
between the early and late passage (Figure 1D). Interestingly, 
the doubling time of 20 μg/mL of fibronectin-coated satellite 
cells at the early passage and late passage had slightly increased 
from 31.3 h (±3.1) to 35.4 h (±2.1) (Figure 1C-1D). This result 
indicates that fibronectin-coated satellite cells could support 
proliferation during the time elapsed between the early and 
late passage.
  We next analyzed the cell cycles of the porcine satellite 
cells from different ECMs using measurements taken in an 
early and late passage. All S phases were decreased in each of 

the three types of coated dishes during late passage (P2, gela-
tin 18.9% [±0.04]; fibronectin, 18.87% [±0.02]; non-coated 
22.81% [±0.22]; P7, gelatin 17.45% [±0.89]; fibronectin 15.26% 
[±0.94]; non-coated 17.73% [±0.92]) (Figure 1E). However, 
the G0/G1 phase had increased by the time of the late passage 
(P2, gelatin 58.9% [±1.05], fibronectin, 62.55% [±0.29]; non-
coated 55.65% [±0.23]; P7, gelatin 72.31% [±1.5]; fibronectin 
74.46% [±1.14]; non-coated 70.26% [±1.27]) (Figure 1E). 
Our result indicates that S phase between different ECM had 
no significant differences, and the S phase was consistent in 
decreasing across all different ECM types.

Porcine satellite cells on fibronectin-coated dishes  
were maintained in vitro at the time of the early and 
late passages
To determine the effect of maintenance of porcine satellite 
cells cultured on different ECM in vitro, we analyzed expres-

Figure 2. Comparative analyses of expressed Pax7 and Myod1 via immunocytochemistry (ICC) at different ECMs at early and late passage. (A) 
Immunostaining of Pax7 (green), MyoD1 (red), and DAPI (blue) at early and late passage. Scale bar 100 μm. (B) Rate of expressed Pax7+/DAPI 
and Myod1+/DAPI in porcine satellite cells at early and late passage with gelatin-, fn (20 μg/mL)- or non-coated dishes. Pax7, paired box 7; Myod1, 
myogenic differentiation 1; ECMs, extra-cellular matrix; DAPI, 4’6-diamidino-2-phenylindole. 
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sion levels of the PAX7 and MYOD1 genes via ICC (Figure 
2A). Porcine satellite cells cultured on fibronectin (20 μg/mL) 
expressed higher levels of PAX7 genes than porcine satellite 
cells cultured on gelatin or non-coated dishes in early and 
late passage (Figure 2B) (P2, gelatin 72.80% [±5.47]; fibro-
nectin, 75.51% [±1.98]; non-coated 71.12% [±2.71]; P7, 
gelatin 57.56% [±3.89]; fibronectin 73.97% [±7.75]; non-
coated 58.52% [±1.87]). Also porcine satellite cells cultured 
on fibronectin (20 μg/mL) expressed high levels of MyoD1 
at both the time of the early and late passage (Figure 2B) (P2, 
gelatin 64.89% [±3.46]; fibronectin, 78.72% [±1.94]; non-
coated 72.38% [±3.57]; P7, gelatin 68.27% [±5.10]; fibronectin 
72.44% [±3.26]; non-coated 59.62% [±2.99]). These results 
indicate that porcine satellite cells are efficiently maintained 
on fibronectin.

Optimizing fibronectin concentration for proliferation 
of porcine satellite cells
The ideal concentration of fibronectin as applied to porcine 
satellite cells to encourage proliferation is unclear. We ana-
lyzed the proliferation using different concentrations of 
fibronectin measured in an early passage. Moreover, as the 
mixture of gelatin and fibronectin exerted a positive effect 
on chondrogenesis, we analyzed the proliferation of mixed 
gelatin and fibronectin at various concentrations [19]. Fibro-
nectin (5, 10, 20 μg/mL) was the most effective (p<0.0001) 
at supporting proliferation (Figure 3A). Interestingly, all 
concentrations of fibronectin/gelatin mixture resulted in less 
proliferation than a single coating of fibronectin. As there 
were no differences in proliferation observed between different 
concentrations of fibronectin, and 1 μg/mL of fibronectin 
increased proliferation more than gelatin, we narrowed the 
tested fibronectin concentrations to 1 μg/mL, 5 μg/mL and 
compared these with 20 μg/mL of fibronectin. We cultured 
these concentrations to late passage and analyzed the dou-

bling time of the porcine satellite cells. The 5 μg/mL and 20 
μg/mL of fibronectin showed the lowest doubling time, indi-
cating that cell proliferation was effective at 5 μg/mL and 20 
μg/mL (p<0.05) (Figure 3B). 

Analysis of cell cycle in satellite cells grown with 
different concentrations of fibronectin
To determine the cell cycle of satellite cells grown with dif-
ferent concentrations of fibronectin, we used a flow cytometer. 
Fibronectin 1 and 20 μg/mL showed the highest percent of 
G0/G1 phase than 5 μg/mL (p<0.005) (Figure 4A). However, 
the G2/M phase was significantly higher with the 5 μg/mL 
(p<0.005) (Figure 4A). No significant differences in the S 
phase were observed across concentrations (Figure 4A). This 
result indicates that there are no differences in the S phase 
when different concentrations of fibronectin are used.

Optimizing fibronectin concentration for maintenance 
of porcine satellite cells
Previous reports showed that Pax7 expression levels decrease 
rapidly as cells are cultured over a long period [13,22]. We 
analyzed expression level of Pax7 and myogenic transcrip-
tion factor MyoD1 by qRT-PCR to determine the expression 
levels at different concentrations of fibronectin. The results 
showed that PAX7 gene expression levels were highest with 
fibronectin 1 μg/mL and with fibronectin 5 μg/mL and lowest 
in 20 μg/mL fibronectin (p<0.0001) (Figure 5A). Interestingly, 
the expression level on MYOD1 gene were down regulated 
in concentration of 5 μg/mL and 20 μg/mL compared to 1 
μg/mL (p<0.0001) (Figure 5B). Surprisingly, fibronectin 20 
μg/mL showed the lowest expression levels of Pax7 and MyoD1. 
This result suggests that even a low concentration of fibro-
nectin maintains Pax7 expression and can potentially maintain 
the satellite cell as well.

Figure 3. Comparative analyses of proliferation of satellite cell on various concentration of fibronectin (Fn) and gelatin (Gel) mixture at early passage. 
Comparative analysis of doubling time of various concentration of fibronectin at late passage. (A) Cell proliferation was analyzed by cell counting 
kit-8 (CCK-8). Analysis was undergone after treating CCK-8 for 3 hours. n = 7, each letter a-d represents significant differences (p<0.0001). (B) Cell 
doubling time was analyzed with a doubling time formula. Each letter a,b represents significant differences (p<0.05).
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DISCUSSION

Many researchers have attempted to maintain satellite cells 
in vitro by regulating the associated signal pathway, growth 
factors, and ECM. In 2009, studies on porcine muscle stem 
cell characteristics for various ECMs had been conducted 
[14]. However, to date there has been no research covering 
how the characteristics of long term cultured porcine satellite 
cells depend on the ECM used. Fibronectin is one ECM al-
ready widely used in cell cultures. Here we analyzed the 
characteristics of short- and long-term culture of porcine 
satellite cells cultured on 20 μg/mL of fibronectin-, gelatin- 
and non-coated dishes. Our result showed that 20 μg/mL of 
fibronectin could proliferate and maintain the cells better 
than gelatin-coated and non-coated dishes. We also found 
that 5 μg/mL of fibronectin had was the optimal level for 
significant proliferation and maintenance of porcine satellite 
cells. 
  Fibronectin cooperates with growth factors to induce 
cell signal pathway. The FGFs are essential in satellite cells 

which regulate cellular self-renewal and differentiation. In 
mouse satellite cells, fibronectin and β1-integrin cooperate 
with FGF and enhance phosphorylation of Erk, an AKT 
signal pathway that regulates cell proliferation [23]. In satel-
lite cells, fibronectin stimulates wnt7a through the FZD7/
Sdc4 coreceptor complex. Fibronectin and Wnt7a together 
regulate the population level of satellite cells and satellite 
myogenic cells [24]. Also, it has been reported that fibro-
nectin-integrin signaling regulates the Hippo pathway via 
the FAK-Src-PI3K-3-phosphoinositide dependent protein 
kinase 1 (PDK1) gene [25,26]. In short, there is support for 
our finding that proliferation and expression of Pax7 and 
Myod1 increases in fibronectin-coated dishes. 
  It is found that the capability of cell adhesion to culture 
dish can lead to cell proliferation. Previous reports have 
shown that endothelial cells placed onto polytetrafluorch-
entlyne vascular grafts could be effectively attached with 
fibronectin. The 2 μg/mL of fibronectin had the lowest at-
tachment rate when compared to 10, 20, 50, 100 μg/mL of 
the same. Also, when 10 μg/mL fibronectin was used, there 

Figure 4. Comparative analyses of cell cycle on various concentration of fibronectin (fn) at time of late passage. (A) The cell cycle of the satellite 
cell was stained with propidium iodide (PI) and analyzed with flow cytometry. G0/G1 phase: n = 3, each letter a,b represents significant differences 
(p<0.005). G2/M phase: n = 3, each letter a-c represents significant differences (p<0.005).
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Figure 5. Expression level of transcription factor PAX7 and MYOD1 in porcine satellite cells at 
late passage.

(A) Level of gene expression of PAX7 in porcine satellite cells.  n=3, Each letter(a, b) represents 
significant differences (P<0.0001).

(B) Level of gene expression of MyoD1 in porcine satellite cells.  n=3, , Each letter (a, b, c) represents 
significant differences (P<0.0001).
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was a difference in the attachment rate until the 10minute 
mark, however, as time progressed, no significant difference 
between this sample and those with fibronectin at higher 
concentrations emerged. It has also previously been found 
that fibronectin 20, 50, 100 μg/mL show no statistical dif-
ferences in their attachment rate between 0 to 120 minutes 
[27]. In our doubling time results, we observed a high dou-
bling time when 1 μg/mL of fibronectin was used, more so 
than with 5 μg/mL and 20 μg/mL. Also, no differences in 5 
μg/mL and 20 μg/mL were observed, which is consistent 
with the endothelia cell attachment results. Ultimately, we 
conclude that in satellite cells there is no difference in dou-
bling time above 5 μg/mL, but doubling time is lower with 
1 μg/mL. There were also no differences in the S phases of 
the samples using different concentrations of fibronectin. 
This leads us to conclude that the 5 μg/mL concentration 
of fibronectin is optimal for porcine satellite cell adherence 
and proliferation.
  In the in vivo niche, many ECMs interact with one another 
to maintain the niche. To mimic the microenvironment in 
vitro many studies have been conducted mixing the ECMs 
with various cell types. Binding between collagen and fibro-
nectin could cause conformation changes in fibronectin and 
could result in a biological response such as cell attachment, 
migration, and wound repair [28]. In a C2C12 myoblast, a 
fibronectin-collagen cell showed a significant increase in dif-
ferentiation [29]. A mixture of gelatin and fibronectin provided 
during chondrogenesis was shown to enhance chrodrogeinc 
genes such as SRY-box transcription factor 9 (SOX9) and 
collagen type 2 alpha 1 chain (COL2A1) and could improve 
the niche of chondrogenesis [19]. However, gelatin and fibro-
nectin mixed at various ratios and provided to porcine satellite 
cells had no significant effect of proliferation (Figure 3A). 
  Previous studies have shown that the characteristics of 
cells change depending on the fibronectin concentration. 
In MCF-7 cells, a Zymographic analysis result showed that 
a prominent matrix metalloproteinase-2 (MMP-2) and 
MMP-9 band appeared when exposed to a concentration 
of 20 μg/mL. At concentrations of 5 µg/mL and 10 µg/mL 
MMP-2 was barely detectable and MMP intensity was much 
less [30]. In a satellite cell culture, expression levels of Pax7 
must be maintained, as this lowers throughout the long-
term culture [13,22]. Our results, achieved using porcine 
satellite cells, showed that PAX7 gene expression levels were 
high in the presence of a low concentration of fibronectin. 
Additional studies will be needed to further determine the 
relationship between the maintenance of porcine satellite 
cells and the concentration.

CONCLUSION

We examined the effect of porcine satellite cells on fibronectin 

during a long-term culture and identified the most appro-
priate concentration of fibronectin necessary to maintain the 
satellite cells. Experimentation showed that concentrations 
of 5 µg/mL maintained Pax7 expression up to the time of a 
late passage and resulted in a low doubling time, suggesting 
their potential as a means of maintaining porcine satellite 
cells. We also showed that the characteristics of the satellite 
cells could change depending on the ECM used and its con-
centrations. This study provides some essential information 
concerning the effective culturing of porcine satellite cells 
and the criteria that should be applied as an ECM is decided 
upon.
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