DOI QR코드

DOI QR Code

Effect of enzymolytic soybean meal supplementation on performance, nitrogen excretion, serum biochemical parameters and intestinal morphology in broilers fed low-protein diets

  • Xin Zhu (College of Animal Science and Veterinary Medicine, Shenyang Agricultural University) ;
  • Kai Gao (College of Animal Science and Veterinary Medicine, Shenyang Agricultural University) ;
  • Ziyi Zhang (College of Animal Science and Veterinary Medicine, Shenyang Agricultural University) ;
  • Haiying Liu (College of Animal Science and Veterinary Medicine, Shenyang Agricultural University) ;
  • Guiqin Yang (College of Animal Science and Veterinary Medicine, Shenyang Agricultural University)
  • 투고 : 2023.03.16
  • 심사 : 2023.06.14
  • 발행 : 2023.11.01

초록

Objective: The objective of this study was to investigate the effect of supplementation with enzymolytic soybean meal (ESBM) on broilers fed low crude protein (CP) diets. Methods: A total of 360 one-day-old broilers were randomly assigned to six treatments with 6 replicates per treatment and 10 chicks per replicate for a period of 42 days. Chicks were fed a basal standard high-CP diet as a positive control (PC), a low-CP diet (reducing 10 g/kg CP from the PC) as a negative control (NC), or an NC + 0.5%, 1.0%, 1.5%, or 2.0% ESBM diet. Results: Compared to chicks fed the PC, chicks fed the NC had a decreased body weight gain (BWG, p<0.05) from 1 to 42 days, but supplementation with 2.0% ESBM restored BWG (p<0.05) and even linearly improved the feed conversion rate (FCR, p<0.05). Digestibility of CP and ether extract was increased (p<0.05) in chicks fed a 1.0% ESBM diet compared to the PC. With increasing levels of ESBM, nitrogen (N) excretion decreased (p<0.05). The addition of ESBM to the diet did not affect (p>0.05) serum concentrations of total protein, albumin and total cholesterol but led to a descending trend in triglycerides and an ascending trend in calcium and urea N at 42 days (p<0.10). There were no differences (p>0.05) in villus height (VH), crypt depth (CD), and VH/CD (V/C) of the duodenum and jejunum between the PC and NC at both 21 days and 42 days, while increasing dietary ESBM levels linearly (p<0.05) decreased CD and increased V/C of the duodenum and jejunum at both 21 days and 42 days. Conclusion: The findings indicated that ESBM could be used in broiler low-CP diets to improve production performance, decrease N excretion, and enhance intestinal health.

키워드

과제정보

The authors are grateful for the support by the National Natural Science Foundation of China (No. 31772618) and Liaoning Revitalization Talents Project (XLYC1902024).

참고문헌

  1. Wen C, Yan W, Sun C, et al. The gut microbiota is largely independent of host genetics in regulating fat deposition in chickens. ISME J 2019;13;1422-36. https://doi.org/10.1038/s41396-019-0367-2
  2. Tahamtani FM, Ivarsson E, Wiklicky V, et al. Feeding live Black Soldier Fly larvae (Hermetia illucens) to laying hens: effects on feed consumption, hen health, hen behavior, and egg quality. Poult Sci 2021;100:101440. https://doi.org/10.1016/j.psj.2021.101400
  3. Cesare AD, Valle IFD, Sala C, et al. Effect of a low protein diet on chicken ceca microbiome and productive performances. Poult Sci 2019;98:3963-76. https://doi.org/10.3382/ps/pez132
  4. Chalova VI, Kim JH, Patterson PH, Ricke SC, Kim WK. Reduction of nitrogen excretion and emission in poultry: A review for organic poultry. J Environ Sci Health B 2016;51:230-5. https://doi.org/10.1080/03601234.2015.1120616
  5. Star L, Tesseraud S, Tol MV, Minussi I, Corrent E, Lambert W. Production performance and plasma metabolite concentrations of broiler chickens fed low crude protein diets differing in Thr and Gly. Anim Nutr 2021;7:472-80. https://doi.org/10.1016/j.aninu.2020.09.003
  6. Palacios MF, Easter RA, Soltwedel KT, et al. Effect of soybean variety and processing on growth performance of young chicks and pigs. J Anim Sci 2004;82:1108-14. https://doi.org/10.2527/2004.8241108x
  7. Chen CC, Shih YC, Chiou PWS, Yu B. Evaluating nutritional quality of single stage- and two stage-fermented soybean meal. Asian-Australas J Anim Sci 2010;23:598-606. https://doi.org/10.5713/ajas.2010.90341
  8. Sinn SM, Gibbons WR, Brown ML, DeRouchey JM, Levesque CL. Evaluation of microbially enhanced soybean meal as an alternative to fishmeal in weaned pig diets. Animal 2017;11:784-93. https://doi.org/10.1017/S1751731116002020
  9. Cervantes-Pahm K, Stein HH. Ileal digestibility of amino acids in conventional, fermented, and enzyme-treated soybean meal and in soy protein isolate, fish meal, and casein fed to weanling pigs. J Anim Sci 2010;88:2674-83. https://doi.org/10.2527/jas.2009-2677
  10. Ma X, Shang Q, Hu J, Liu H, Brokner C, Piao X. Effects of replacing soybean meal, soy protein concentrate, fermented soybean meal or fish meal with enzyme-treated soybean meal on growth performance, nutrient digestibility, antioxidant capacity, immunity and intestinal morphology in weaned pigs. Livest Sci 2019;225:39-46. https://doi.org/10.1016/j.livsci.2019.04.016
  11. Stefanello C, Vieira SL, Rios HV, Simoes CT, Sorbara JOB. Energy and nutrient utilisation of broilers fed soybean meal from two different Brazilian production areas with an exogenous protease. Anim Feed Sci Technol 2016;221:267-73. https://doi.org/10.1016/j.anifeedsci.2016.06.005
  12. Li Y, Liu Y, Wu J, et al. Comparative effects of enzymatic soybean, fish meal and milk powder in diets on growth performance, immunological parameters, SCFAs production and gut microbiome of weaned piglets. J Anim Sci Biotechnol 2021;12:106. https://doi.org/10.1186/s40104-021-00625-8
  13. Ma XK, Shang QH, Wang QQ, Wang JX, Piao XS. Comparative effects of enzymolytic soybean meal and antibiotics in diets on growth performance, antioxidant capacity, immunity, and intestinal barrier function in weaned pigs. Anim Feed Sci Technol 2019;248:47-58. https://doi.org/10.1016/j.anifeedsci.2018.12.003
  14. Yu X, Luo K, Rao W, et al. Effects of replacing dietary fish meal with enzyme-treated soybean meal on growth performance, intestinal microbiota, immunity and mTOR pathway in abalone Haliotis discus hannai. Fish Shellfish Immunol 2022;130:9-21. https://doi.org/10.1016/j.fsi.2022.08.073
  15. Brink M, Janssens GPJ, Demeyer P, Bagci O, Delezie E. Reduction of dietary crude protein and feed form: Impact on broiler litter quality, ammonia concentrations, excreta composition, performance, welfare, and meat quality. Anim Nutr 2022;9: 291-303. https://doi.org/10.1016/j.aninu.2021.12.009
  16. Lambert W, Chalvon-Demersay T, Bouvet R, Le Cour Grandmaison J, Fontaine S. Reducing dietary crude protein in broiler diets does not compromise performance and reduces environmental impacts, independently from the amino acid density of the diet. J Appl Poult Res 2022;31:100300. https://doi.org/10.1016/j.japr.2022.100300
  17. Liu SY, Macelline SP, Chrystal PV, Selle PH. Progress towards reduced-crude protein diets for broiler chickens and sustainable chicken-meat production. J Anim Sci Biotechnol 2021;12:20. https://doi.org/10.1186/s40104-021-00550-w
  18. Maynard CW, Kidd MT, Chrystal PV, et al. Assessment of limiting dietary amino acids in broiler chickens offered reduced crude protein diets. Anim Nutr 2022;10:1-11. https://doi.org/10.1016/j.aninu.2021.11.010
  19. Yang N, Li M, Huang Y, et al. Comparative efficacy of fish meal replacement with enzymatically treated soybean meal on growth performance, immunity, oxidative capacity and fecal microbiota in weaned pigs. Front Vet Sci 2022;9:889432. https://doi.org/10.3389/fvets.2022.889432
  20. Wang JP, Liu N, Song MY, Qin CL, Ma CS. Effect of enzymolytic soybean meal on growth performance, nutrient digestibility and immune function of growing broilers. Anim Feed Sci Technol 2011;169:224-9. https://doi.org/10.1016/j.anifeedsci.2011.06.012
  21. Shen YR, Zhang S, Zhao X, Xiao WW, Shi SR. Effects of enzymolytic soybean meal on production performance, meat quality, intestine development and immune function of broiler. China Poult 2016;38:30-5.
  22. Brandejs V, Kupcikova L, Tvrdon Z, Hampel D, Lichovnikova M. Broiler chicken production using dietary crude protein reduction strategy and free amino acid supplementation. Livest Sci 2022;258:104879. https://doi.org/10.1016/j.livsci.2022.104879
  23. Zhou SF, Sun ZW, Ma LZ, Yu JY, Ma CS, Ru YJ. Effect of feeding enzymolytic soybean meal on performance, digestion and immunity of weaned pigs. Asian-Australas J Anim Sci 2011;24:103-9. https://doi.org/10.5713/ajas.2011.10205
  24. Cappalaere L, De Rauglaudre T, Lambert W, Alfonso-Avila AR, Letourneau-Montminy MP. The impact of low crude protein diet in pigs and broilers through meta-analysis approach. Animal - science proceedings 2021;12:261-2. https://doi.org/10.1016/j.anscip.2022.01.008
  25. Yang JM, Xiao WW, Tang L, Chen H, Liu S. Effects of enzymolytic soybean protein on production performance, nutrient metabolism, antioxidant and immune function of lactating sows. Feed Res 2017;20:16-21. https://doi.org/10.13557/j.cnki.issn1002-2813.2017.20.005
  26. Aymerich P, Soldevila C, Bonet J, Gasa J, Sola-Oriol D, Coma J. Effects of increasing dietary lysine to crude protein ratio on growth performance, blood urea nitrogen and fecal consistency of growing pigs. Animal-science proceedings 2022;13:306-7. https://doi.org/10.1016/j.anscip.2022.07.061
  27. Zhang AM, Tang L, Yin J, Xiao WW. Effects of enzymolytic soybean meal on growth performance, mineral availability and intestine health of piglets. Chinese J Anim Nutr 2015;27:541-50. https://doi.org/10.3969/j.issn.1006-267x.2015.02.026
  28. Ducatelle R, Goossens E, De Meyer F, et al. Biomarkers for monitoring intestinal health in poultry: present status and future perspectives. Vet Res 2018;49:43. https://doi.org/10.1186/s13567-018-0538-6
  29. Teirlynck E, Bjerrum L, Eeckhaut V, et al. The cereal type in feed influences gut wall morphology and intestinal immune cell infiltration in broiler chickens. Br J Nutr 2009;102:1453-61. https://doi.org/10.1017/S0007114509990407
  30. Liu P, Wang J, Bai S, Zeng Q, Ding X, Zhang K. Effect of different nutrient level diets supplemented with enzymolytic soybean meal on performance, egg quality, nutrient apparent availability and intestinal morphology of laying hens. Chinese J Anim Nutr 2019;31;1127-37. https://doi.org/10.3969/j.issn.1006-267x.2019.03.018
  31. Feng J, Liu X, Xu ZR, Lu YP, Liu YY. Effect of fermented soybean meal on intestinal morphology and digestive enzyme activities in weaned piglets. Dig Dis Sci 2007;52:1845-50. https://doi.org/10.1007/s10620-006-9705-0
  32. Norozi M, Rezaei M, Kazemifard M. Effects of acid-hydrolyzed soybean meal on growth performance, jejunal morphology, digestive enzyme activities, nutrient utilization, and intestinal microbial population in broiler chickens. Trop Anim Health Prod 2022;54:162. https://doi.org/10.1007/s11250-022-03167-x
  33. Saleh E, Tawfeek S, Abdel-Fadeel A, Abdel-Daim A, AbdelRazik A, Youssef I. Effect of dietary protease supplementation on growth performance, water quality, blood parameters and intestinal morphology of Nile tilapia (Oreochromis niloticus). J Anim Physiol Anim Nutr 2022;106:419-28. https://doi.org/10.1111/jpn.13591
  34. Bahadori M, Rezaeipour V, Abdullahpour R, Irani M. Effects of sesame meal bioactive peptides, individually or in combination with a mixture of essential oils, on growth performance, carcass, jejunal morphology, and microbial composition of broiler chickens. Trop Anim Health Prod 2022;54:235. https://doi.org/10.1007/s11250-022-03232-5
  35. Salavati M, Rezaeipour V, Abdullahpour R, Mousavi N. Effects of graded inclusion of bioactive peptides derived from sesame meal on the growth performance, internal organs, gut microbiota and intestinal morphology of broiler chickens. Int J Pept Res Ther 2020;26:1541-8. https://doi.org/10.1007/s10989-019-09947-8