DOI QR코드

DOI QR Code

Identification of Host-Resistant and Susceptible Varieties of Korean Grapes to Plasmopara viticola, a Pathogen Causing Grapevine Downy Mildew

  • Marc Semunyana (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Sun Ha Kim (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Jiyoung Min (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Soo-Min Lee (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Sang-Keun Oh (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University)
  • 투고 : 2023.07.12
  • 심사 : 2023.09.30
  • 발행 : 2023.09.30

초록

Grapevine downy mildew, caused by Plasmopara viticola, significantly damages vineyards and is one of the most devastating diseases affecting cultivated grapes worldwide. In this study, we characterized the phenotypic and molecular traits of 11 P. viticola isolates from four grape-growing regions in South Korea. Additionally, we investigated the diversity of pathogenicity among these isolates and conducted an assay to evaluate the response of grape cultivars to P. viticola infection. Lemon-shaped sporangia were identified in the collected isolates, which released zoospores into the suspension at room temperature. Within a few hours of inoculation, the zoospores developed germ tubes. We tested 11 P. viticola isolates for pathogenicity in 845 grape cultivars to screen for grape host resistance to downy mildew infection. Among the tested isolates, JN-9 showed the highest virulence. Grape cultivars displayed varying phenotypic reactions to P. viticola infection: approximately 7% were highly susceptible, 41% were susceptible, 20% were moderately susceptible, 8% were resistant, and 24% exhibited extreme resistance. Phylogenetic analysis based on four genomic regions (internal transcribed spacer 1 [ITS1], actin, beta-tubulin, and cytochrome c oxidase II) revealed a close evolutionary relationship among all the Korean isolates, forming a single monophyletic lineage. Notably, these isolates showed greater similarity to European isolates than to American isolates. This comprehensive study contributes to a deeper understanding of the identity and behavior of P. viticola, which is crucial for developing effective resistance strategies against this pathogen in grape cultivars cultivated in South Korea.

키워드

과제정보

This work was supported by the Project No. PJ01492503 of Rural Development Administration, Republic of Korea.

참고문헌

  1. Bouquet A, Torregrosa L, Iocco P, Thomas MR. Grapes. Compendium of Transgenic Crop Plants 2009;12:189-232.
  2. Nicoll DC. Acknowledge and use your grapevine. Management Decision 1994;32:25.
  3. Chang MS, Cho SD, Kim DM, Kim GK. Analysis of consumer preferences with regard to sensory quality attributes of Korean grapes. Korean J Food Preserv 2009;16:204-10.
  4. Buonassisi D, Colombo M, Migliaro D, Dolzani C, Peressotti E, Mizzotti C, Velasco R, Masiero S, Perazzolli M, Vezzulli S. Breeding for grapevine downy mildew resistance: a review of "Omics" approaches. Euphytica 2017;213:103.
  5. Toffolatti SL, Russo G, Campia P, Bianco PA, Borsa P, Coatti M, Torriani SF, Sierotzki H. A time-course investigation of resistance to the carboxylic acid amide mandipropamid in field populations of Plasmopara viticola treated with anti-resistance strategies. Pest Manag Sci 2018;74:2822-34. https://doi.org/10.1002/ps.5072
  6. Choi YJ, Cho SE, Shin HD. First report of downy mildew caused by Plasmopara viticola on Vitis ficifolia var. sinuata in Korea. Plant Dis 2017;101:1958-8. https://doi.org/10.1094/PDIS-04-17-0571-PDN
  7. Kim BR, Kim IH, Lee JS, Choi YJ. First report of downy mildew caused by Plasmopara viticola on Vitis coignetiae in Korea. Plant Dis 2019;103:1793.
  8. Diez-Navajas AM, Wiedemann-Merdinoglu S, Greif C, Merdinoglu D. Nonhost versus host resistance to the grapevine downy mildew, Plasmopara viticola, studied at the tissue level. Phytopathology 2008;98:776-80. https://doi.org/10.1094/PHYTO-98-7-0776
  9. Yin L, An Y, Qu J, Li X, Zhang Y, Dry I, Wu H, Lu J. Genome sequence of Plasmopara viticola and insight into the pathogenic mechanism. Sci Report 2017;7:46553.
  10. Brilli M, Asquini E, Moser M, Bianchedi PL, Perazzolli M, Si-Ammour A. A multi-omics study of the grapevine-downy mildew (Plasmopara viticola) pathosystem unveils a complex protein coding- and noncoding-based arms race during infection. Sci Report 2018;8:757.
  11. Dussert Y, Mazet ID, Couture C, Gouzy J, Piron MC, Kuchly C, Bouchez O, Rispe C, Mestre P, Delmotte F. A high-quality grapevine downy mildew genome assembly reveals rapidly evolving and lineage-specific putative host adaptation genes. Genome Biol Evol 2019;11:954-69. https://doi.org/10.1093/gbe/evz048
  12. Zhang W, Manawasinghe IS, Zhao W, Xu J, Brooks S, Zhao X, Hyde KD, Chethana KYT, Liu J, Li X, et al. Multiple gene genealogy reveals high genetic diversity and evidence for multiple origins of Chinese Plasmopara viticola population. Sci Report 2017;7:17304.
  13. Rouxel M, Mestre P, Comont G, Lehman BL, Schilder A, Delmotte F. Phylogenetic and experimental evidence for host-specialized cryptic species in a biotrophic oomycete. New Phytologist 2013;197:251-63. https://doi.org/10.1111/nph.12016
  14. Mohamed AMA. Rooting of grape (Vitis vinifera) cuttings in response to position and application of rooting hormone (IBA) [dissertation]. Sudan: Khartoum University; 2005.
  15. Gomez-Zeledon J, Zipper R, Spring O. Assessment of phenotypic diversity of Plasmopara viticola on Vitis genotypes with different resistance. Crop Protection 2013;54:221-8. https://doi.org/10.1016/j.cropro.2013.08.015
  16. Tripathy SK, Maharana M, Ithape DM, Lenka D, Mishra D, Prusti A, Ranjan Mohanty DS, Raj KRR. Exploring rapid and efficient protocol for isolation of fungal DNA. Int J Curr Microbiol Appl Sci 2017;6:951-60. https://doi.org/10.20546/ijcmas.2017.603.113
  17. Kennelly MM, Gadoury DM, Wilcox WF, Magarey PA, Seem RC. Primary infection, lesion productivity, and survival of sporangia in the grapevine downy mildew pathogen Plasmopara viticola. Phytopathology 2007;97:512-22. https://doi.org/10.1094/PHYTO-97-4-0512
  18. Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC. Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 2000;31:21-32. https://doi.org/10.1006/fgbi.2000.1228
  19. Wong F, Burr H, Wilcox W. Heterothallism in Plasmopara viticola. Plant Pathol 2001;50:427-32. https://doi.org/10.1046/j.1365-3059.2001.00573.x
  20. Burruano S. The life-cycle of Plasmopara viticola, cause of downy mildew of vine. Mycologist 2000;14:179-82. https://doi.org/10.1016/S0269-915X(00)80040-3
  21. Yu Y, Zhang Y, Yin L, Lu J. The mode of host resistance to Plasmopara viticola infection of grapevines. Phytopathology. 2012;102:1094-101. https://doi.org/10.1094/PHYTO-02-12-0028-R
  22. Gobbin D, Rumbou A, Linde CC, Gessler C. Population genetic structure of Plasmopara viticola after 125 years of colonization in European vineyards. Mol Plant Pathol 2006;7:519-31. https://doi.org/10.1111/j.1364-3703.2006.00357.x
  23. Li X, Yin L, Ma L, Zhang Y, An Y, Lu J. Pathogenicity variation and population genetic structure of Plasmopara viticola in China. J Phytopathol 2016;164:863-73. https://doi.org/10.1111/jph.12505
  24. Sakr N. Variation in aggressiveness of Plasmopara halstedii (sunflower downy mildew). J Plant Dis Prot 2009;116:247-51. https://doi.org/10.1007/BF03356317
  25. Sakr N. Studies on pathogenicity in Plasmopara halstedii (sunflower downy mildew). I JLSCI 2010;4:48-59. https://doi.org/10.3126/ijls.v4i0.3481
  26. Santos RF, Ciampi-Guillardi M, Fraaije BA, de Oliveira AA, Amorim L. The Climate-driven genetic diversity has a higher impact on the population structure of Plasmopara viticola than the production system or qoi fungicide sensitivity in subtropical Brazil. Front Microbiol 2020;11:2236.
  27. Thompson JN, Burdon JJ. Gene-for-gene coevolution between plants and parasites. Nature 1992;360:121-5. https://doi.org/10.1038/360121a0
  28. Schwander F, Eibach R, Fechter I, Hausmann L, Zyprian E, Topfer R. Rpv10: a new locus from the Asian Vitis gene pool for pyramiding downy mildew resistance loci in grapevine. Theor Appl Genet 2012;124:163-76. https://doi.org/10.1007/s00122-011-1695-4
  29. Dangl JL, Jones JD. Plant pathogens and integrated defence responses to infection. Nature 2001;411:826-33. https://doi.org/10.1038/35081161
  30. Alonso-Villaverde V, Voinesco F, Viret O, Spring JL, Gindro K. The effectiveness of stilbenes in resistant Vitaceae: ultrastructural and biochemical events during Plasmopara viticola infection process. Plant Physiol Biochem 2011;49:265-74. https://doi.org/10.1016/j.plaphy.2010.12.010
  31. Malacarne G, Vrhovsek U, Zulini L, Cestaro A, Stefanini M, Mattivi F, Delledonne M, Velasco R, Moser C. Resistance to Plasmopara viticola in a grapevine segregating population is associated with stilbenoid accumulation and with specific host transcriptional responses. BMC Plant Biol 2011;11:1-13 https://doi.org/10.1186/1471-2229-11-1
  32. Maddalena G, Delmotte F, Bianco PA, De Lorenzis G, Toffolatti SL. Genetic structure of Italian population of the grapevine downy mildew agent, Plasmopara viticola. Annals of Applied Biology 2020;176:257-67. https://doi.org/10.1111/aab.12567